[1] Agarwal, R.P., Dragomir, S.S.:
A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (12) (2010), 3785–3812.
DOI 10.1016/j.camwa.2010.04.014 |
MR 2651854
[2] Bacak, V., Vildan, T., Türkmen, R.:
Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013 (262) (2013), 10 pp.
MR 3068637
[3] Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A.:
Some inequalities associated with the Hermite-Hadamard inequalities for operator $h$-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297.
MR 3745136
[4] Dragomir, S.S.:
Hermite-Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218 (3) (2011), 766–772.
MR 2831305
[5] Dragomir, S.S.:
Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012.
MR 2866026
[6] Dragomir, S.S.:
Bounds for the difference between weighted and integral means of operator convex function. RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online s
http://rgmia.org/papers/v22/v22a97.pdf]
[9] Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y.:
Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005.
MR 3026316
[11] Ghazanfari, A.G.:
Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703.
DOI 10.1007/s11785-016-0542-7 |
MR 3558363
[12] Han, J., Shi, J.:
Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041.
DOI 10.22436/jnsa.010.11.38 |
MR 3738820
[15] Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S.:
Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (1) (2016), 187–203.
DOI 10.1007/s00605-015-0816-6 |
MR 3535913
[16] Vivas Cortez, M., Hernández, J.E.H.:
On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator $h$-convex functions. Appl. Math. Inf. Sci. 11 (4) (2017), 983–992.
DOI 10.18576/amis/110405 |
MR 3677622
[17] Vivas Cortez, M., Hernández, J.E.H.:
Refinements for Hermite-Hadamard type inequalities for operator $h$-convex function. Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307.
DOI 10.18576/amis/110507 |
MR 3704419
[18] Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A.:
Some new generalized Jensen and Hermite-Hadamard inequalities for operator $h $-convex functions. Appl. Math. Inf. Sci. 11 (2) (2017), 383–392.
DOI 10.18576/amis/110205 |
MR 3704419
[19] Wang, S.-H.:
Hermite-Hadamard type inequalities for operator convex functions on the co-ordinates. J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125.
DOI 10.22436/jnsa.010.03.22 |
MR 3646673
[20] Wang, S.-H.:
New integral inequalities of Hermite-Hadamard type for operator m-convex and $(\alpha ,m)$-convex functions. J. Comput. Anal. Appl. 22 (4) (2017), 744–753.
MR 3616847