Previous |  Up |  Next

Article

Keywords:
Degenerate parabolic problem; entropy solution; existence; semi-discretization; Rothe's method; weighted Sobolev space
Summary:
In the present paper, we prove existence results of entropy solu\-tions to a class of nonlinear degenerate parabolic $p(\cdot )$-Laplacian problem with Dirichlet-type boundary conditions and $L^1$ data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces.
References:
[1] Abassi, A., Hachimi, A. El, Jamea, A.: Entropy solutions to nonlinear Neumann problems with $L^1$-data. Int. J. Math. Statist, 2, 2008, 4-17, MR 2348474
[2] Akdim, Y., Chakir, A., Elgorch, N., Mekkour, M.: Entropy Solutions of Nonlinear $p(x)$-Parabolic Inequalities. Nonlinear Dyn. Syst. Theory, 18, 2, 2018, 107-129, MR 3820826
[3] Alaoui, M.K., Meskine, D., Souissi, A.: On some class of nonlinear parabolic inequalities in Orlicz spaces. Nonlinear Analysis: Theory, Methods & Applications, 74, 17, 2011, 5863-5875, Elsevier, DOI 10.1016/j.na.2011.04.048 | MR 2833359
[4] Azroul, E., Barbara, A., Benboubker, M.B., Haiti, K. El: Existence of entropy solutions for degenerate elliptic unilateral problems with variable exponents. Boletim da Sociedade Paranaense de Matem{á}tica, 36, 1, 2018, 79-99, MR 3632473
[5] Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Portugaliae Mathematica, 66, 1, 2009, 29-63, DOI 10.4171/PM/1829 | MR 2512819
[6] Bénilan, Ph., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22, 2, 1995, 241-273, MR 1354907
[7] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM journal on Applied Mathematics, 66, 4, 2006, 1383-1406, SIAM, DOI 10.1137/050624522 | MR 2246061 | Zbl 1102.49010
[8] Eden, A., Michaux, B., Rakotoson, J.M.: Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis. Indiana University mathematics journal, 1990, 737-783, JSTOR, DOI 10.1512/iumj.1990.39.39036 | MR 1078736
[9] Hachimi, A. El, Jamea, A.: Nonlinear parabolic problems with Neumann-type boundary conditions and $L^{1}$-data. Electronic Journal of Qualitative Theory of Differential Equations, 2007, 27, 2007, 1-22, University of Szeged, Hungary, MR 2354156
[10] Fan, X., Zhao, D.: On the spaces $L^{p(x)}(\Omega )$ and $W^{m,p(x)}(\Omega )$. Journal of Mathematical Analysis and Applications, 263, 2, 2001, 424-446, Elsevier,
[11] Ho, K., Sim, I.: Existence and some properties of solutions for degenerate elliptic equations with exponent variable. Nonlinear Analysis: Theory, Methods & Applications, 98, 2014, 146-164, Elsevier, DOI 10.1016/j.na.2013.12.003 | MR 3158451
[12] Hästö, P.: The $p(x)$-Laplacian and applications. J. Anal, 15, 2007, 53-62, Citeseer, MR 2554092
[13] Jamea, A.: Weak solutions to nonlinear parabolic problems with variable exponent. International Journal of Mathematical Analysis, 10, 12, 2016, 553-564, DOI 10.12988/ijma.2016.6223
[14] Jamea, A., Lamrani, A.A., Hachimi, A. El: Existence of entropy solutions to nonlinear parabolic problems with variable exponent and $ L^1$-data. Ricerche di Matematica, 67, 2, 2018, 785-801, Springer, DOI 10.1007/s11587-018-0359-y | MR 3864809
[15] Kim, Y.H., Wang, L., Zhang, C.: Global bifurcation for a class of degenerate elliptic equations with variable exponents. Journal of Mathematical Analysis and Applications, 371, 2, 2010, 624-637, Elsevier, DOI 10.1016/j.jmaa.2010.05.058 | MR 2670139
[16] Ouaro, S., Ouedraogo, A.: Nonlinear parabolic problems with variable exponent and $L^{1}$-data. Electronic Journal of Differential Equations, 2017, 32, 2017, 1-32, MR 3609160
[17] Růžička, M.: Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Math. 1748. 2000, Springer, Berlin, DOI 10.1007/BFb0104030 | MR 1810360
[18] Sanchón, M., Urbano, J.M.: Entropy solutions for the $p(x)$-Laplace equation. Transactions of the American Mathematical Society, 361, 12, 2009, 6387-6405, DOI 10.1090/S0002-9947-09-04399-2 | MR 2538597
[19] Zhang, C.: Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential Equations, 2014, 92, 2014, 1-14, MR 3193998
[20] Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^{1}$ data. Journal of Differential Equations, 248, 6, 2010, 1376-1400, Elsevier, DOI 10.1016/j.jde.2009.11.024 | MR 2593046
Partner of
EuDML logo