Article
MSC:
03C20,
03E10,
03E20,
03E55,
03E75,
16D80,
16D90,
18A20,
18A30,
18A40,
20K25 |
MR 4124286 |
Zbl 07368969
Keywords:
kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
Summary:
For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
References:
[1] Dimitric, R.:
Slenderness in Abelian Categories. Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag,
MR 0722633
[2] Dimitric, R.:
Slenderness. Vol. I. Abelian Categories. 2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429.
MR 3930609
[3] Dimitric, R.:
Slenderness. Vol. II. Generalizations. Dualizations. 2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press,
MR 3930609
[4] Fuchs, L.:
Abelian Groups. 1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960)..
MR 0106942 |
Zbl 0091.02704
[5] Hrbacek, K., Jech, T.:
Introduction to Set Theory (3rd edition, revised and expanded). 1999, New York -- Basel: Marcel Dekker,
MR 1697766
[6] Łoś, J.:
Linear equations and pure subgroups. Bull. Acad. Polon. Sci, 7, 1959, 13-18,
MR 0103922
[7] Stenström, B.:
Rings of Quotients. An Introduction to Methods of Ring Theory. 1975, Berlin, Heidelberg, New York: Springer-Verlag,
MR 0389953