Previous |  Up |  Next

Article

Keywords:
dual Ramsey property; finite relational structure; category theory
Summary:
We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.
References:
[1] Abramson, F. G., Harrington, L. A.: Models without indiscernibles. J. Symb. Log. 43 (1978), 572-600. DOI 10.2307/2273534 | MR 0503795 | Zbl 0391.03027
[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats. Dover Books on Mathematics, Dover Publications, Mineola (2009). MR 1051419 | Zbl 0695.18001
[3] Frankl, P., Graham, R. L., Rödl, V.: Induced restricted Ramsey theorems for spaces. J. Comb. Theory, Ser. A 44 (1987), 120-128. DOI 10.1016/0097-3165(87)90064-1 | MR 0871393 | Zbl 0608.05059
[4] Graham, R. L., Rothschild, B. L.: Ramsey's theorem for $n$-parameter sets. Trans. Am. Math. Soc. 159 (1971), 257-292. DOI 10.1090/S0002-9947-1971-0284352-8 | MR 0284352 | Zbl 0233.05003
[5] Mašulović, D.: A dual Ramsey theorem for permutations. Electron. J. Comb. 24 (2017), Article ID P3.39, 12 pages. MR 3691556 | Zbl 1369.05200
[6] Mašulović, D.: Pre-adjunctions and the Ramsey property. Eur. J. Comb. 70 (2018), 268-283. DOI 10.1016/j.ejc.2018.01.006 | MR 3779618 | Zbl 1384.05153
[7] Mašulović, D., Scow, L.: Categorical equivalence and the Ramsey property for finite powers of a primal algebra. Algebra Univers. 78 (2017), 159-179. DOI 10.1007/s00012-017-0453-0 | MR 3697187 | Zbl 1421.08003
[8] Nešetřil, J.: Ramsey theory. Handbook of Combinatorics, Vol. 2 R. L. Graham et al. Elsevier, Amsterdam, (1995), 1331-1403. MR 1373681 | Zbl 0848.05065
[9] Nešetřil, J.: Metric spaces are Ramsey. Eur. J. Comb. 28 (2007), 457-468. DOI 10.1016/j.ejc.2004.11.003 | MR 2261831 | Zbl 1106.05099
[10] Nešetřil, J., Rödl, V.: Partitions of finite relational and set systems. J. Comb. Theory, Ser. A 22 (1977), 289-312. DOI 10.1016/0097-3165(77)90004-8 | MR 0437351 | Zbl 0361.05017
[11] Nešetřil, J., Rödl, V.: Dual Ramsey type theorems. Abstracta Eighth Winter School on Abstract Analysis, Mathematical Institute AS CR, Prague (1980), Z. Frolík 121-123.
[12] Nešetřil, J., Rödl, V.: Ramsey classes of set systems. J. Comb. Theory, Ser. A 34 (1983), 183-201. DOI 10.1016/0097-3165(83)90055-9 | MR 0692827 | Zbl 0515.05010
[13] Nešetřil, J., Rödl, V.: The partite construction and Ramsey set systems. Discrete Math. 75 (1989), 327-334. DOI 10.1016/0012-365X(89)90097-6 | MR 1001405 | Zbl 0671.05006
[14] Prömel, H. J.: Induced partition properties of combinatorial cubes. J. Comb. Theory, Ser. A 39 (1985), 177-208. DOI 10.1016/0097-3165(85)90036-6 | MR 0793270 | Zbl 0638.05005
[15] Prömel, H. J., Voigt, B.: Hereditary attributes of surjections and parameter sets. Eur. J. Comb. 7 (1986), 161-170. DOI 10.1016/S0195-6698(86)80042-7 | MR 0856329 | Zbl 0606.05002
[16] Prömel, H. J., Voigt, B.: A sparse Graham-Rothschild theorem. Trans. Am. Math. Soc. 309 (1988), 113-137. DOI 10.1090/S0002-9947-1988-0957064-5 | MR 0957064 | Zbl 0662.05006
[17] Ramsey, F. P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30 (1930), 264-286 \99999JFM99999 55.0032.04. DOI 10.1112/plms/s2-30.1.264 | MR 1576401
[18] Sokić, M.: Ramsey properties of finite posets II. Order 29 (2012), 31-47. DOI 10.1007/s11083-011-9196-2 | MR 2948747 | Zbl 1254.03067
[19] Solecki, S.: A Ramsey theorem for structures with both relations and functions. J. Comb. Theory, Ser. A 117 (2010), 704-714. DOI 10.1016/j.jcta.2009.12.004 | MR 2645186 | Zbl 1247.05256
Partner of
EuDML logo