[3] Andreianov, B., Boyer, F., Hubert, F.:
Discrete Besov framework for finite volume approximation of the $p$-Laplacian on non-uniform Cartesian grids. ESAIM Proc. 18 (2007), 1-10.
DOI 10.1051/proc:071801 |
MR 2404891 |
Zbl 1241.65089
[4] Andreianov, B., Boyer, F., Hubert, F.:
Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equations 23 (2007), 145-195.
DOI 10.1002/num.20170 |
MR 2275464 |
Zbl 1111.65101
[10] Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.:
Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Numer. Math. 134 (2016), 569-609.
DOI 10.1007/s00211-015-0782-x |
MR 3555349 |
Zbl 1358.76069
[19] Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.:
The Gradient Discretisation Method. Mathematics & Applications 82, Springer, Cham (2018).
DOI 10.1007/978-3-319-79042-8 |
MR R3898702 |
Zbl 06897811
[22] Glazyrina, L. L., Pavlova, M. F.:
On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line. Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482-499 Russian.
MR 3659692
[23] Glowinski, R., Rappaz, J.:
Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 37 (2003), 175-186.
DOI 10.1051/m2an:2003012 |
MR 1972657 |
Zbl 1046.76002
[25] Leray, J., Lions, J.-L.:
Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 93 (1965), 97-107 French.
DOI 10.24033/bsmf.1617 |
MR 0194733 |
Zbl 0132.10502
[27] Liu, W. B., Barrett, J. W.:
A further remark on the regularity of the solutions of the $p$-Laplacian and its applications to their finite element approximation. Nonlinear Anal., Theory Methods Appl. 21 (1993), 379-387.
DOI 10.1016/0362-546X(93)90081-3 |
MR 1237129 |
Zbl 0856.35017
[28] Liu, W. B., Barrett, J. W.:
A remark on the regularity of the solutions of the $p$-Laplacian and its application to their finite element approximation. J. Math. Anal. Appl. 178 (1993), 470-487.
DOI 10.1006/jmaa.1993.1319 |
MR 1238889 |
Zbl 0799.35085