[1] Aledo, J.A., Alias, L.J., Romero, A.:
A New Proof of Liebmann Classical Rigidity Theorem for Surfaces in Space Forms. Rocky Mountain J. Math. 35 (6) (2005), 1811–1824.
DOI 10.1216/rmjm/1181069618 |
MR 2210636
[2] Bauer, M., Charon, N., Harms, P.: Inexact Elastic Shape Matching in the Square Root Normal Field Framework. Geometric Science of Information (Nielsen, F., Barbaresco, F., eds.), 2019, pp. 13–21.
[3] Hirsch, M.W.:
Differential Topology. Springer-Verlag, 1996.
MR 1336822
[4] Jermyn, I., Kurtek, S., Laga, H., Srivastava, A:
Elastic shape analysis of three-dimensional objects. Synthesis Lectures on Computer Vision 7 (2017), 1–185.
DOI 10.2200/S00785ED1V01Y201707COV012
[5] Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. Computer Vision – ECCV 2012 (2012), 804–817.
[6] Laga, H., Qian, X., Jermyn, I., Srivastava, A.:
Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (2016), 2451–2464.
DOI 10.1109/TPAMI.2016.2647596
[7] Michor, P.W.:
Topics in differential geometry. Graduate Studies in Mathematics, vol. 93, American Mathematical Society, Providence, RI, 2008.
DOI 10.1090/gsm/093 |
MR 2428390
[8] Michor, P.W.:
Manifolds of mappings for continuum mechanics. Geometric Continuum Mechanics (Segev, R., Epstein, M., eds.), Birkhäuser, June 2020, arxiv:1909.00445, pp. 3–75.
MR 2605800