[1] Bacha, S., Li, H., Montenegro-Martinez, D.:
Complex power electronics systems modeling and analysis. IEEE Trans. Industr. Electron. 66 (2019), 8, 6412-6415.
DOI 10.1109/tie.2019.2901189
[2] Chen, W., Ding, D., Dong, H., Wei, G.:
Distributed resilient filtering for power systems subject to deial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 8, 1688-1697.
DOI 10.1109/tsmc.2019.2905253
[3] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018), 1-11.
[5] Chen, B., Zhang, W. A., Yu, L.:
Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks. IEEE Trans. Signal Process. 62 (2014), 4, 797-812.
DOI 10.1109/tsp.2013.2294603 |
MR 3160314
[6] Dashkovskiy, S. N., Rüffer, B. S., Wirth, F. R.:
Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J. Control Optim. 48 (2010), 6, 4089-4118.
DOI 10.1137/090746483 |
MR 2645475
[7] Ding, D., Han, Q.-L., Wang, Z., Ge, X.:
A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499.
DOI 10.1109/tii.2019.2905295
[8] Ding, L., Han, Q.-L., Wang, L., Sindi, E.:
Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935.
DOI 10.1109/tii.2018.2799239
[9] Ding, D., Wang, Z., Dong, H., Shu, H.:
Distributed $H_\infty$ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case. Automatica 48 (2012), 8, 1575-1585.
DOI 10.1016/j.automatica.2012.05.070 |
MR 2950405
[10] Ding, D., Wang, Z., Han, Q.-L.:
A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control (2019), 1-1.
DOI 10.1109/tac.2019.2934389
[11] Ding, D., Wang, Z., Han, Q.-L., Wei, G.:
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384.
DOI 10.1109/tcyb.2018.2827037
[13] Ge, X., Han, Q.-L., Wang, Z.:
A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159.
DOI 10.1109/tcyb.2017.2789296
[14] Ge, X., Han, Q.-L., Wang, Z.:
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183.
DOI 10.1109/tcyb.2017.2769722
[15] Haber, A., Verhaegen, M.:
Moving horizon estimation for large-scale interconnected systems. IEEE Trans. Automat. Control 58 (2013), 11, 2834-2847.
DOI 10.1109/tac.2013.2272151 |
MR 3125992
[17] Hu, S., Yue, D., Han, Q.-L.:
Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans. Cybernet. (2019), 1-13.
DOI 10.1109/tcyb.2019.2903817 |
MR 3632431
[18] Hu, J., Wang, Z., Liu, S., Gao, H.:
A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64 (2016), 155-162.
DOI 10.1016/j.automatica.2015.11.008 |
MR 3433092
[19] Khan, U. A., Moura, J. M. F.:
Distributing the Kalman filter for large-scale systems. IEEE Trans. Signal Process. 56 (2008), 10, 4919-4935.
DOI 10.1109/tsp.2008.927480 |
MR 2517222
[20] Kim, H., Park, J., Joo, Y.:
Decentralized $H_\infty$ fuzzy filter for nonlinear large-scale sampled-data systems with uncertain interconnections. Fuzzy Sets Systems 344 (2018), 145-162.
DOI 10.1016/j.fss.2017.10.010 |
MR 3811679
[21] Liang, J., Wang, F., Wang, Z.:
Robust Kalman filtering for two-dimensional systems with multiplicative noises and measurement degradations: The finite-horizon case. Automatica 96 (2018), 166-177.
DOI 10.1016/j.automatica.2018.06.044 |
MR 3844960
[22] Liu, Q., Wang, Z., He, X.:
A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation. IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309.
DOI 10.1109/tsp.2016.2634541 |
MR 3597280
[24] Liu, A., Yu, L., Zhang, W.-A., Chen, M. Z. Q.:
Moving horizon estimation for networked systems with quantized measurements and packet dropouts. IEEE Trans. Circuits Systems I: Regular Papers 60 (2013), 7, 1823-1834.
DOI 10.1109/tcsi.2012.2226499 |
MR 3072453
[25] Ma, L., Xu, M., Jia, R., Ye, H.:
Exponential $H_\infty$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014),4, 491-511.
DOI 10.14736/kyb-2014-4-0491 |
MR 3275081
[27] Nourian, M., Leong, A., Dey, S.:
Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints. IEEE Trans. Automat. Control 59 (2014), 8, 2128-2143.
DOI 10.1109/tac.2014.2319011 |
MR 3245252
[28] Pavelkova, L.:
Nonlinear Bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation. Kybernetika 47 (2011), 3, 370-384.
MR 2857195
[29] Rana, M., Li, L., Su, S. W:
Microgrid state estimation: A distributed approach. IEEE Trans.Ind. Inform. 14 (2018), 8, 3368-3375.
DOI 10.1109/tii.2017.2782750
[30] Riverso, S., Trecate, G. F.: Hycon2 benchmark: Power network system. arXiv: 1207.2000vl (2012).
[32] Wang, J., Zhang, X.-M., Han, Q.-L.:
Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 1, 77-88.
DOI 10.1109/tnnls.2015.2411734 |
MR 3465626
[33] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.:
Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229.
DOI 10.1109/TCYB.2019.2900478
[34] Yan, H., Li, P., Zhang, H., Zhan, X., Yang, F.: Event-triggered distributed fusion estimation of networked multisensor systems with limited information. IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-8.
[35] Yang, G. H., Wang, J. L.:
Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Automat. Control 46 (2001), 2, 343-348.
DOI 10.1109/9.905707 |
MR 1814586
[37] Yu, W., Deng, Z., Zhou, H., Zeng, X.:
Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems. Kybernetika 53 (2017),5, 747-764.
DOI 10.14736/kyb-2017-5-0747 |
MR 3750101
[39] Zhang, X.-M., Han, Q.-L., Wang, Z. D., Zhang, B.-L.:
Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans. Cybernet. 47 (2017), 10, 3184-3194.
DOI 10.1109/tcyb.2017.2690676 |
MR 4064243
[40] Zhang, P., Wang, J.:
Event-triggered observer-based tracking control for leader-follower multi-agent systems. Kybernetika 52 (2016),4, 589-606.
DOI 10.14736/kyb-2016-4-0589 |
MR 3565771
[41] Zhang, D., Yu, L., Zhang, W.-A.:
Energy efficient distributed filtering for a class of nonlinear systems in sensor networks. IEEE Sensors J. 15 (2015), 5, 3026-3036.
DOI 10.1109/jsen.2014.2386348