Previous |  Up |  Next

Article

Keywords:
$H_{\infty }$ finite-horizon filtering; muti-rate communication; stochastic protocol (SP); time-varying systems
Summary:
In this paper, the variance-constrained $H_\infty$ finite-horizon filtering problem is investigated for a class of time-varying nonlinear system under muti-rate communication network and stochastic protocol (SP). The stochastic protocol is employed to determine which sensor obtains access to the muti-rate communication network in order to relieve communication burden. A novel mapping technology is applied to characterize the randomly switching behavior of the data transmission resulting from the utilization of the SP in muti-rate communication network. By using relaxation method, sufficient conditions are derived for the existence of the finite-horizon filter satisfying both the prescribed $H_\infty$ performance and the covariance requirement of filtering errors, and the solutions of filters satisfying the above indexes are obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation.
References:
[1] Brunot, M., Janot, A., Young, P., Carrillo, F.: An instrumental variable method for robot identification based on time variable parameter estimation. Kybernetika 54 (2019), 1, 202-220. DOI 10.14736/kyb-2018-1-0202 | MR 3780963
[2] Chen, W., Ding, D.-R., Ge, X.-H., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. DOI 10.1109/tcyb.2018.2885567
[3] Chen, W., Ding, D.-R., Dong, H.-L., Wei, G.-L.: Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. DOI 10.1109/tsmc.2019.2905253
[4] Cetinkaya, A., Ishii, H., Hayakawa, T.: Analysis of Stochastic Switched Systems With Application to Networked Control Under Jamming Attacks. IEEE Trans. Automat. Control 64 (2019), 5, 2013-2028. DOI 10.1109/tac.2018.2832466 | MR 3951043
[5] Deng, F., Yang, H.-L., Wang, L.-J.: Adaptive unscented Kalman filter based estimation and filtering for dynamic positioning with model uncertainties. Int. J. Control Automat. Systems 17 (2019), 3, 667-678. DOI 10.1007/s12555-018-9503-4
[6] Ding, D.-R., Wang, Z.-D., Han, Q.-L., Wei, G.-L.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI 10.1109/tcyb.2018.2827037
[7] Ding, D.-R., Han, Q.-L., Wang, Z.-R., Ge, X.-H.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. {\mi15} (2019), 5, 2483-2499. DOI 10.1109/tii.2019.2905295
[8] Dong, H.-L., Wang, Z.-D., Shen, B., Ding, D.-R.: Variance-constrained $H_{\infty}$ control for a class of nonlinear stochastic discrete time-varying systems: The event-triggered design. Automatica 72 (2016), 28-36. DOI 10.1016/j.automatica.2016.05.012 | MR 3542911
[9] Du, Z.-L., Li, X.-M.: Strong tracking Tobit Kalman filter with model uncertainties. Int. J. Control Automat. Systems 17 (2019), 2, 345-355. DOI 10.1007/s12555-017-0655-4
[10] Ge, X.-H., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI 10.1109/tcyb.2016.2570860
[11] Ge, X.-H., Han, Q.-L., Wang, Z.-D.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI 10.1109/tcyb.2017.2789296
[12] Ge, X.-H., Han, Q.-L., Wang, Z.-D.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI 10.1109/tcyb.2017.2769722
[13] Fridman, E., Shaked, U., Xie, L.: Robust $H_\infty$ filtering of linear systems with time-varying delay. IEEE Trans. Automat. Control 48 (2003), 1, 159-165. DOI 10.1109/tac.2002.806674 | MR 1950328
[14] He, Y., Liu, G.-P., Rees, D., Wu, M.: $H_\infty$ Filtering for discrete-time systems with time-varying delay. Signal Process. 89 (2009), 3, 275-282. DOI 10.1016/j.sigpro.2008.08.008 | MR 2680246
[15] Hu, C., Qin, W., Li, Z., He, B., Liu, G.: Consensus-based state estimation for multi-agent systems with constraint information. Kybernetika 3 (2017), 53, 545-561. DOI 10.14736/kyb-2017-3-0545 | MR 3684685
[16] Hung, Y.-S., Yang, F.-W.: Robust $H_\infty$ filtering with error variance constraints for uncertain discrete time-varying systems with uncertainty. Automatica 39 (2003), 7, 1185-1194. DOI 10.1016/s0005-1098(03)00117-1 | MR 2140848
[17] Liang, Y., Chen, T.-W., Pan, Q.: Multi-rate optimal state estimation. Int. J. Control 82 (2009), 11, 2059-2076. DOI 10.1080/00207170902906132 | MR 2561978
[18] Li, X.-G., Zhu, X.-J.: Stability analysis of neutral systems with distributed delays. Automatica 44 (2008), 8, 2197-2201. DOI 10.1016/j.automatica.2007.12.009 | MR 2531353 | Zbl 1283.93212
[19] Li, H., Shi, Y.: Robust $H_\infty$ filtering for nonlinear stochastic systems with uncertainties and Markov delays. Automatica 48 (2012), 1, 159-166. DOI 10.1016/j.automatica.2011.09.045 | MR 2879424
[20] Liu, K., Fridman, E., Hetel, L.: Stability and $L_{2}-gain$ analysis of networked control systems under round-robin scheduling: a time-delay approach. Systems Control Lett. 61 (2012), 5, 666-675. DOI 10.1016/j.sysconle.2012.03.002 | MR 2913495
[21] Liu, S., Wang, Z.-D., Wang, L.-C., Wei, G.-L.: On quantized $H_{\infty}$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case. Inform. Sci. 459 (2018), 211-223. DOI 10.1016/j.ins.2018.02.050 | MR 3811013
[22] Qi, Q., Zhang, H., Wu, Z.: Stabilization control for linear continuous-time mean-field systems. IEEE Trans. Automat. Control 64 (2019), 8, 3461-3468. DOI 10.1109/tac.2018.2881141 | MR 3992889
[23] Tabbara, M., Nesic, D.: Input-output stability of networked control systems with stochastic protocols and channels. IEEE Trans. Automat. Control 53 (2008), 5, 1160-1175. DOI 10.1109/tac.2008.923691 | MR 2445672
[24] Shen, B., Wang, Z.-D., Huang, T.-W.: Stabilization for sampled-data systems under noisy sampling interval. Automatica 63 (2016), 162-166. DOI 10.1016/j.automatica.2015.10.005 | MR 3429982
[25] Subramanian, A., Sayed, A.-H.: Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Trans. Automat. Control 49 (2004), 1, 149-154. DOI 10.1109/tac.2003.821422 | MR 2028557
[26] Tan, H., Shen, B., Liu, Y., Alsaedi, A., Ahmad, B.: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform. Fusion 36, (2017), 313-320. DOI 10.1016/j.inffus.2016.12.003
[27] Wang, Z.-D., Ho, D.-W.C., Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Trans. Automat. Control 48 (2003), 7, 560-567. MR 1988100
[28] Xu, Y., Su, H., Pan, Y.-J., Wu, Z., Xu, W.: Stability analysis of networked control systems with round-robin scheduling and packet dropouts. J. Franklin Inst. 350 (2013), 8, 2013-2027. DOI 10.1016/j.jfranklin.2013.05.024 | MR 3084055
[29] Yaz, Y.-I., Yaz, E.-E.: On LMI formulations of some problems arising in nonlinear stochastic system analysis. IEEE Trans. Automat. Control 44 (1999), 4, 813-816. DOI 10.1109/9.754824 | MR 1684441
[30] Zhang, W.-A., Feng, G, Yu, L.: Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica 48 (2012), 9, 2016-2028. DOI 10.1016/j.automatica.2012.06.027 | MR 2956878
[31] Zhang, X.-M., Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. DOI 10.1109/tcyb.2015.2487420
[32] Zhang, X.-M., Han, Q.-L., Ge, X.-H., Ding, D.-R., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica, 1-17. DOI 10.1109/jas.2019.1911651 | MR 3841465
[33] Zhang, Y., Wang, Z.-D., Ma, L.-F.: Variance-constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523. DOI 10.1002/rnc.3520 | MR 3565746
[34] Zheng, S.: Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods. Kybernetika 54, (2018), 5, 937-957. DOI 10.14736/kyb-2018-5-0937 | MR 3893129
[35] Zuo, Z., Han, Q.-L., Ning, B., Ge, X.-H., Zhang, X.-M.: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. DOI 10.1109/tii.2018.2817248 | MR 3932129
[36] Ding, D.-R., Wang, Z.-D., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control, 1-1. DOI 10.1109/tac.2019.2934389
Partner of
EuDML logo