[1] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.:
$H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382.
DOI 10.1109/tcyb.2018.2885567
[2] Chen, W., Ding, D., Dong, H., Wei, G.:
Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems49 (2019), 8, 1688-1697.
DOI 10.1109/tsmc.2019.2905253
[3] Ding, D., Wang, Z., Han, Q.-L.:
A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control. 1-11.
DOI 10.1109/tac.2019.2934389
[4] Ding, D., Wang, Z., Han, Q.-L., Wei, G.:
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet, 49 (2019), 6, 2372-2384.
DOI 10.1109/tcyb.2018.2827037
[5] Dong, H., Wang, Z., Ho, D., Gao, H.:
Variance-constrained $H_\infty$ filtering for nonlinear time-varying stochastic systems with multiple missing measurements: The finite-horizon case. IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543.
DOI 10.1109/tsp.2010.2042489 |
MR 2789403
[6] Ge, X., Han, Q.-L.:
Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127.
DOI 10.1109/tie.2017.2701778
[7] Ge, X., Han, Q.-L., Wang, Z.:
A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159.
DOI 10.1109/tcyb.2017.2789296
[8] Ge, X., Han, Q.-L., Wang, Z.:
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183.
DOI 10.1109/tcyb.2017.2769722
[9] Hu, C., Qin, W., He, B., Liu, G.:
Distributed $H_\infty$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2015), 5, 814-829.
DOI 10.14736/kyb-2015-5-0814 |
MR 3445986
[11] Liang, Y., Chen, T., Pan, Q.:
Multi-rate stochastic $H_\infty$ filtering for networked multi-sensor fusion. Kybernetika 46 (2010), 2, 437-444.
MR 2877091
[12] Liu, S., Wang, Z., Wang, L., Wei, G.:
On quantized $H_\infty$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case. Inform. Sci. 459 (2018), 211-223.
DOI 10.1016/j.ins.2018.02.050 |
MR 3811013
[13] Lv, B., Huang, Y., Li, T., Dai, X., He, M., Zhang, W., Yang, Y.:
Simulation and performance analysis of the IEEE$1588$ PTP with Kalman filtering in multi-hop wireless sensor networks. J. Networks 9 (2014), 12, 3445-53.
DOI 10.4304/jnw.9.12.3445-3453
[14] Ma, L., Wang, Z., Hu, J., Bo, Y., Guo, Z.:
Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements. Signal Process. 90 (2010), 6, 2060-2071.
DOI 10.1016/j.sigpro.2010.01.010 |
MR 2987050
[15] Ma, L., Xu, M., Jia, R., Ye, H.:
Exponential $H_\infty$ filter design for stochastic markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 4, 491-511.
DOI 10.14736/kyb-2014-4-0491 |
MR 3275081
[16] Shen, B., Tan, H., Wang, Z., Huang, T.:
Quantized/saturated control for sampleddata systems under noisy sampling intervals: a confluent vandermonde matrix approach. IEEE Trans. Automat. Control 62 (2017), 9, 4753-4759.
DOI 10.1109/tac.2017.2685083 |
MR 3691900
[17] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.:
Kalman filtering with intermittent observations. IEEE Trans. Automat. Control 49 (2004), 9, 1453-1464.
DOI 10.1109/tac.2004.834121 |
MR 2086911
[19] Subramanian, A., Sayed, A. H.:
Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Trans. Automat. Control 49 (2004), 1, 149-154.
DOI 10.1109/tac.2003.821422 |
MR 2028557
[20] Tan, H., Shen, B., Liu, Y., Alsaedi, A., Ahmad, B.:
Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform. Fusion 36 (2017), 313-320.
DOI 10.1016/j.inffus.2016.12.003
[21] Tian, F., Cui, B.: Consensus based minimum variance filter with packet dropouts. Computer Engrg. Appl. 52 (2016), 12, 123-6, 157.
[23] Xiao, Y., Cao, Y., Lin, Z.:
Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52 (2004), 5, 1266-1277.
DOI 10.1109/tsp.2004.826180 |
MR 2061982
[26] Zhang, X.-M, Han, Q.-L.:
A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757.
DOI 10.1109/tcyb.2015.2487420
[27] Zhang, X.-M, Han, Q.-L., Zhang., B.:
An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 4-16.
DOI 10.1109/tii.2016.2607150
[28] Zhang, X.-M, Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.:
Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17.
DOI 10.1109/jas.2019.1911651 |
MR 3748030
[29] Zhang, Y., Wang, Z., Ma, L.:
Variance-Constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523.
DOI 10.1002/rnc.3520 |
MR 3565746
[30] Zhang, Y., Wang, Z., Zou, L., Fang, H.:
Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerospace Electron. Systems 53 (2017), 3, 1431-1441.
DOI 10.1109/taes.2017.2671498
[31] Zhong, M., Ye, H., Ding, S., Wang, G.:
Observer-based fast rate fault detection for a class of multirate sampled-data systems. IEEE Trans. Automat. Control 52 (2007), 3, 520-525.
DOI 10.1109/tac.2006.890488 |
MR 2300484
[32] Zou, L., Wang, Z., Hu, J., Gao, H.:
On $H_\infty$ finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks. IEEE Trans. Automat. Control 62 (2017), 9, 4884-4890.
DOI 10.1109/tac.2017.2691310 |
MR 3691918