[1] Aazam, M., Zeadally, S., Harras, K. A.:
Fog computing architecture, evaluation, and future research directions. IEEE Comm. Magazine 56, (2018), 5, 2018, 46-52.
DOI 10.1109/mcom.2018.1700707 |
MR 3843414
[2] Ahmad, F., Rasool, A., Ozsoy, E., Rajasekar, S., Sabanovic, A., Elitaş, M.:
Distribution system state estimation-A step towards smart grid. Renewable Sustainable Energy Rev. 81 (2018), 2659-2671.
DOI 10.1016/j.rser.2017.06.071
[3] Chen, W., Ding, D., Dong, H., Wei, G.:
Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697.
DOI 10.1109/tsmc.2019.2905253
[4] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.:
$H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382.
DOI 10.1109/tcyb.2018.2885567
[5] Chen, Y., Wang, Z., Yuan, Y., Date, P.:
Distributed $H_\infty$ filtering for switched stochastic delayed systems over sensor networks with fading measurements. IEEE Trans. Cybernet. 50 (2018), 1, 2-14.
DOI 10.1109/tcyb.2018.2852290
[6] Ding, D., Han, Q.-L., Wang, Z., Ge, X.:
Distributed recursive filtering of cyber-physical systems with security defenses. IEEE Trans. Systems Man Cybernet.: Systems.
DOI 10.1109/tsmc.2019.2960541
[7] Ding, D., Han, Q.-L., Wang, Z., Ge, X.:
A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499.
DOI 10.1109/tii.2019.2905295
[8] Ding, D., Wang, Z., Dong, H., Shu, H.:
Distributed $H_\infty$ state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case. Automatica 48 (2012), 8, 1575-1585.
DOI 10.1016/j.automatica.2012.05.070 |
MR 2950405
[10] Ding, D., Wang, Z., Han, Q.-L.:
A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control 65 (2020), 4, 1792-1799.
DOI 10.1109/tac.2019.2934389 |
MR 4052856
[11] Ding, D., Wang, Z., Han, Q.-L.:
A scalable algorithm for event-triggered state estimation with unknown parameters and switching topologies over sensor networks. IEEE Trans. Cybernet.
DOI 10.1109/tcyb.2019.2917543
[12] Ding, D., Wang, Z., Han, Q.-L., Wei, G.:
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384.
DOI 10.1109/tcyb.2018.2827037
[13] Ding, D., Wang, Z., Ho, D. W. C., Wei, G.:
Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78 (2017), 231-240.
DOI 10.1016/j.automatica.2016.12.026 |
MR 3614098
[14] Ding, D., Wang, Z., Lam, J., Shen, B.:
Finite-Horizon $H_\infty$ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements. IEEE Trans. Automat. Control 60 (2015), 9, 2488-2493.
DOI 10.1109/tac.2014.2380671 |
MR 3393143
[15] Ding, D., Wang, Z., Shen, B., Shu, H.:
$H_\infty$ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays. IEEE Trans. Neural Networks Learning Systems 23 (2012), 5, 725-736.
DOI 10.1109/tnnls.2012.2187926
[16] Ding, L., Han, Q.-L., Zhang, X.-M.:
Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 7, 3910-3922.
DOI 10.1109/tii.2018.2884494
[17] Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M.:
An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123.
DOI 10.1109/tcyb.2017.2771560 |
MR 3554944
[18] Ding, L., Han, Q.-L., Wang, L., Sindi, E.:
Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935.
DOI 10.1109/tii.2018.2799239
[19] Dong, H., Wang, Z., Gao, H.:
Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans. Signal Process. 60 (2012), 6, 3164-3173.
DOI 10.1109/tsp.2012.2190599 |
MR 2924079
[21] Ge, X., Han, Q.-L.:
Distributed event-triggered $H_\infty$ filtering over sensor networks with communication delays. Inform. Sci. 291 (2015), 128-142.
DOI 10.1016/j.ins.2014.08.047 |
MR 3264405
[22] Ge, X., Han, Q.-L.:
Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127.
DOI 10.1109/tie.2017.2701778
[23] Ge, X., Han, Q.-L., Wang, Z.:
A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159.
DOI 10.1109/tcyb.2017.2789296
[24] Ge, X., Han, Q.-L., Wang, Z.:
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183.
DOI 10.1109/tcyb.2017.2769722
[25] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.:
Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet. 50 (2020), 3, 1306-1320.
DOI 10.1109/tcyb.2019.2917179
[26] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, D., Yang, F.:
Resilient and secure remote monitoring for a class of cyber-physical systems against attacks. Inform. Sci. 512 (2020), 1592-1605.
DOI 10.1016/j.ins.2019.10.057 |
MR 4038642
[29] Han, F., Dong, H., Wang, Z., Li, G.:
Local design of distributed $H_\infty$-consensus filtering over sensor networks under multiplicative noises and deception attacks. Int. J. Robust Nonlinear Control 29 (2019), 8, 2296-2314.
DOI 10.1002/rnc.4493 |
MR 3940120
[30] Han, F., Wei, G., Ding, D., Song, Y.:
Local condition based consensus filtering with stochastic nonlinearities and multiple missing measurements. IEEE Trans. Automat. Control 62 (2017), 9, 4784-4790.
DOI 10.1109/tac.2017.2689722 |
MR 3691904
[31] Heemels, W. P. M. H., Johansson, K. H., Tabuada, P.:
An introduction to eventtriggered and self-triggered control. In: Proc. 51st IEEE Conference on Decision and Control, Maui 2012, pp. 3270-3285.
DOI 10.1109/cdc.2012.6425820 |
MR 2952326
[32] Healy, M., Newe, T., Lewis, E.:
Wireless sensor node hardware: A review. In: 2008 IEEE Sensor, Lecce 2008, pp. 621-624.
DOI 10.1109/icsens.2008.4716517
[33] Hill, J. L., Culler, D. E.:
Mica: a wireless platform for deeply embedded networks. IEEE Micro 22, (2002), 6, 12-24.
DOI 10.1109/mm.2002.1134340
[34] Hu, J., Wang, Z., Liang, J., Dong, H.:
Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: A delay-fractioning approach. J. Franklin Inst. 352 (2015), 3750-3763.
DOI 10.1016/j.jfranklin.2014.12.006 |
MR 3385893
[35] Hu, S., Yue, D., Chen, X., Cheng, Z., Xie, X.:
Resilient $H_\infty$ filtering for event-triggered networked systems under nonperiodic DoS jamming attacks. IEEE Trans. Systems Man Cybernet.: Systems.
DOI 10.1109/tsmc.2019.2896249
[37] Karray, F., Jmal, M. W., Garcia-Ortiz, A., Abid, M., Obeid, A. M.:
A comprehensive survey on wireless sensor node hardware platforms. Comput. Networks 144, (2018), 89-110.
DOI 10.1016/j.comnet.2018.05.010
[38] Li, J.-Y., Zhang, B., Lu, R., Xu, Y.:
Robust distributed $H_\infty$ state estimation for stochastic periodic systems over constraint sensor networks. IEEE Trans. Systems Man Cybernet.: Systems.
DOI 10.1109/tsmc.2018.2837047
[39] Li, Q., Shen, B., Wang, Z., Shen, W.:
Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic event-triggered approach. Automatica 113 (2019), 108681.
DOI 10.1016/j.automatica.2019.108681 |
MR 4056010
[40] Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J.:
Synchronization control for a Class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986.
DOI 10.1109/tcyb.2018.2818941 |
MR 3891660
[41] Liang, J., Wang, Z., Liu, X.:
Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Networks 22 (2011), 3, 486-496.
DOI 10.1109/tnn.2011.2105501
[42] Liu, D., Yang, G.-H.:
Dynamic event-triggered control for linear time-invariant systems with $l_2$-gain performance. Int. J. Robust Nonlinear Control 29 (2019), 507-518.
DOI 10.1002/rnc.4403 |
MR 3890676
[43] Liu, J., Gu, Y., Cao, J., Fei, S.:
Distributed event-triggered $H_\infty$ filtering over sensor networks with sensor saturations and cyber-attacks. ISA Trans. 81 (2018), 63-75.
DOI 10.1016/j.isatra.2018.07.018
[44] Liu, K., Guo, H., Zhang, Q., Xia, Y.:
Distributed secure filtering for discrete-time systems under Round-Robin protocol and deception attacks. IEEE Trans. Cybernet.
DOI 10.1109/tcyb.2019.2897366
[45] Liu, Q., Wang, Z., He, X., Zhou, D. H.:
Event-based distributed filtering with stochastic measurement fading. IEEE Trans. Industr. Inform. 11 (2015), 6, 1643-1652.
DOI 10.1109/tii.2015.2444355 |
MR 3671115
[46] Liu, S., Liu, P.:
Distributed model-based control and scheduling for load frequency regulation of smart grids over limited bandwidth networks. IEEE Trans. Industr. Inform. 14 (2018), 5, 1814-1823.
DOI 10.1109/tii.2017.2766666
[47] Liu, S., Wang, Z., Wei, G., Li, M.:
Distributed set-membership filtering for multirate systems under the Round-Robin scheduling over sensor networks. IEEE Trans. Cybernetics.
DOI 10.1109/tcyb.2018.2885653
[48] Liu, Y., Zhao, Y., Wu, F.:
Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances. IET Control Theory Appl. 10 (2016), 4, 431-442.
DOI 10.1049/iet-cta.2015.0654 |
MR 3495243
[49] Ma, L., Wang, Z., Han, Q.-L., Lam, H.-K.:
Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks. IEEE Sensors J. 17 (2017), 7, 2279-2288.
DOI 10.1109/jsen.2017.2654325
[50] Ma, L., Wang, Z., Lam, H.-K., Kyriakoulis, N.:
Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks. IEEE Trans. Cybernet. 47 (2017), 11, 3772-3783.
DOI 10.1109/tcyb.2016.2582081
[51] Mahmud, R., Toosi, A. N., Ramamohanarao, K., Buyya, R.:
Context-aware placement of industry 4.0 applications in fog computing environments. IEEE Trans. Industr. Inform.
DOI 10.1109/tii.2019.2952412
[52] Marin-Perianu, M., Meratnia, N., Havinga, P., et.al.:
Decentralized enterprise systems: a multiplatform wireless sensor network approach. IEEE Wireless Commun. 14, (2007), 6, 57-66.
DOI 10.1109/mwc.2007.4407228
[53] Meral, M., Çelík, D.:
A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions. Ann. Rev. Control 47 (2019), 112-132.
DOI 10.1016/j.arcontrol.2018.11.003 |
MR 3973204
[54] Mihai, V., Dragana, C., Stamatescu, G., Popescu, D., Ichim, L.:
Wireless sensor network architecture based on fog computing. In: 5th International Conference on Control, Decision and Information Technologies. Thessaloniki, 2018, pp. 743-747.
DOI 10.1109/codit.2018.8394851
[56] Olfati-Saber, R.:
Distributed Kalman filtering for sensor networks. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498.
DOI 10.1109/cdc.2007.4434303
[57] Olfati-Saber, R.:
Kalman-consensus filter: Optimality, stability, and performance. In: Proc. 48h IEEE Conference on Decision and Control, Shanghai 2009, pp. 7036-7042.
DOI 10.1109/cdc.2009.5399678
[58] Olfati-Saber, R., Jalalkamali, P.:
Coupled distributed estimation and control for mobile sensor networks. IEEE Trans. Automat. Control 57 (2012), 10, 2609-2614.
DOI 10.1109/tac.2012.2190184 |
MR 2991662
[59] Rafi, A., Rehman, A., Ali, G., Akram, J.:
Efficient energy utilization in fog computing based wireless sensor networks. In: 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur 2019, pp. 1-5.
DOI 10.1109/icomet.2019.8673423
[60] Rahman, T., Yao, X., Tao, G., Ning, H., Zhou, Z.:
Efficient edge nodes reconfiguration and selection for the internet of things. IEEE Sensors J. 19, (2019), 12, 4672-4679.
DOI 10.1109/jsen.2019.2895119
[61] Satyanarayanan, M., Schuster, R., Ebling, M., Fettweis, G., Flinck, H., Joshi, K., Sabnani, K.:
An open ecosystem for mobile-cloud convergence. IEEE Commun. Magazine 53, (2015), 3, 63-70.
DOI 10.1109/mcom.2015.7060484
[62] Sarkar, S., Wankar, R., Srirama, S., Suryadevara, N. K.:
Serverless management of sensing systems for fog computing framework. IEEE Sensors J. 20 (2020), 3, 1564-1572.
DOI 10.1109/jsen.2019.2939182
[64] Shen, B., Wang, Z., Liu, X.:
A stochastic sampled-data approach to distributed $H_\infty$ filtering in sensor networks. IEEE Trans. Circuits Systems I: Regular Papers 58 (2011), 9, 2237-2246.
DOI 10.1109/tcsi.2011.2112594 |
MR 2868162
[65] Shen, B., Wang, Z., Qiao, H.:
Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163.
DOI 10.1109/tnnls.2016.2516030 |
MR 3721783
[66] Song, H., Yu, L., Zhang, W.-A.:
Multi-sensor-based $H_\infty$ estimation in heterogeneous sensor networks with stochastic competitive transmission and random sensor failures. IET Control Theory Appl. 8 (2014), 3, 202-210.
DOI 10.1049/iet-cta.2013.0432 |
MR 3185345
[67] Souravlias, D., Parsopoulos, K.:
Particle swarm optimization with neighborhood-based budget allocation. Int. J. Machine Learning Cybernet. 7 (2016), 3, 451-477.
DOI 10.1007/s13042-014-0308-3
[69] Su, X., Wu, L., Shi, P.:
Sensor networks with random link failures: Distributed filtering for T-S fuzzy systems. IEEE Trans. Industr. Inform. 9 (2013), 3, 1739-1750.
DOI 10.1109/tii.2012.2231085
[70] Sun, Z., Wei, L., Xu, C., Wang, T., Nie, Y., Xing, X., Lu, J.:
An energy-efficient cross-layer-sensing clustering method based on intelligent fog computing in WSNs. IEEE Access 14, (2019), 7, 144165-144177.
DOI 10.1109/access.2019.2944858
[71] Tan, Y., Xiong, M., Niu, B., Liu, J., Fei, S.:
Distributed hybrid-triggered $H_\infty$ filter design for sensor networked systems with output saturations. Neurocomputing 315 (2018), 261-271.
DOI 10.1016/j.neucom.2018.07.022
[74] Ugrinovskii, V.:
Distributed $H_\infty$ estimation resilient to biasing attacks. IEEE Trans. Control Network Systems 7 (2020), 1, 458-470.
DOI 10.1109/tcns.2019.2924192
[75] Wan, X., Wang, Z., Han, Q.-L., Wu, M.:
Finite-time $H_\infty$ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols. IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491.
DOI 10.1109/tcns.2019.2924192 |
MR 3854691
[76] Wan, X., Wang, Z., Wu, M., Liu, X.:
$H_\infty$ state estimation for discrete-time nonlinear singularly perturbed complex networks under the Round-Robin protocol. IEEE Trans. Neural Networks Learning Systems 30 (2019), 2, 415-426.
DOI 10.1109/tnnls.2018.2839020 |
MR 3914858
[77] Wang, D., Wang, Z., Li, G., Wang, W.:
Distributed filtering for switched nonlinear positive systems with missing measurements over sensor networks. IEEE Sensors J. 16 (2016), 12, 4940-4948.
DOI 10.1109/jsen.2016.2555761
[78] Wang, D., Wang, Z., Shen, B., Li, Q.:
$H_\infty$ finite-horizon filtering for complex networks with state saturations: The weighted try-once-discard protocol. Int. J. Robust Nonlinear Control 29 (2019), 2096-2111.
DOI 10.1002/rnc.4479 |
MR 3940107
[79] Wang, L., Wang, Z., Han, Q.-L., Wei, G.:
Event-based variance-constrained $H_\infty$ filtering for stochastic parameter systems over sensor networks with successive missing measurements. IEEE Trans. Cybernet. 48 (2018), 3, 1007-1017.
DOI 10.1109/tcyb.2017.2671032 |
MR 1988100
[80] Wang, T., Qiu, J., Fu, S., Ji, W.:
Distributed fuzzy $H_\infty$ filtering for nonlinear multirate networked double-layer industrial processes. IEEE Trans. Industr. Electron. 64 (2017), 6, 5203-5211.
DOI 10.1109/tie.2016.2622234
[81] Wang, X.-L., Yang, G.-H.:
Distributed event-triggered $H_\infty$ filtering for discrete-time T-S fuzzy systems over sensor networks. IEEE Trans. Systems Man Cybernet.: Systems.
DOI 10.1109/tsmc.2018.2882540
[82] Wen, C., Wang, Z., Liu, Q., Alsaadi, F. E.:
Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 930-941.
DOI 10.1109/tsmc.2016.2629464
[83] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.:
Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet. 50 (2020), 3, 1220-1229.
DOI 10.1109/tcyb.2019.2900478
[84] Xu, Y., Lu, R., Shi, P., Li, H., Xie, S.:
Finite-time distributed state estimation over sensor networks with Round-Robin protocol and fading channels. IEEE Trans. Cybernet. 48 (2018), 1, 336-345.
DOI 10.1109/tcyb.2016.2635122
[85] Yan, H., Yang, Q., Zhang, H., Yang, F., Zhan, X.:
Distributed $H_\infty$ state estimation for a class of filtering networks with time-varying switching topologies and packet losses. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2047-2057.
DOI 10.1109/tsmc.2017.2708507
[86] Yan, H., Zhang, H., Yang, F., Huang, C., Chen, S.:
Distributed $H_\infty$ filtering for switched repeated scalar nonlinear systems with randomly occurred sensor nonlinearities and asynchronous switching. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2263-2270.
DOI 10.1109/tsmc.2017.2754495
[87] Yang, F., Han, Q.-L., Liu, Y.:
Distributed $H_\infty$ state estimation over a filtering network with time-varying and switching topology and partial information exchange. IEEE Trans. Cybernet. 49 (2019), 3, 870-882.
DOI 10.1109/tcyb.2017.2789212
[88] Yang, F., Xia, N., Han, Q.-L.:
Event-based networked islanding detection for distributed solar PV generation systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 322-329.
DOI 10.1109/tii.2016.2607999
[89] Yang, W., Wang, X. F., Shi, H. B.:
Optimal consensus-based distributed estimation with intermittent communication. Int. J. Systems Sci. 42 (2011), 9, 1521-1529.
DOI 10.1080/00207721.2011.565135 |
MR 2819529
[90] Yin, X., Li, Z., Zhang, L., Han, M.:
Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 864-874.
DOI 10.1109/tsmc.2016.2632155
[91] Yu, H., Zhuang, Y., Wang, W.:
Distributed $H_\infty$ filtering in sensor networks with randomly occurred missing measurements and communication link failures. Inform. Sci. 222 (2013), 424-438.
DOI 10.1016/j.ins.2012.07.059 |
MR 2998522
[92] Yu, W., Deng, Z., Zhou, H., Zeng, X.:
Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems. Kybernetika 53 (2017), 5, 747-764.
DOI 10.14736/kyb-2017-5-0747 |
MR 3750101
[94] Zhang, D., Shi, P., Zhang, W.-A., Yu, L.:
Energy-efficient distributed filtering in sensor networks: A unified switched system approach. IEEE Trans. Cybernet. 46 (2017), 7, 1618-1629.
DOI 10.1109/tcyb.2016.2553043 |
MR 3537173
[95] Zhang, D., Yu, L., Zhang, W.-A.:
Energy efficient distributed filtering for a class of nonlinear systems in sensor networks. IEEE Sensors J. 15 (2015), 5, 3026-3036.
DOI 10.1109/jsen.2014.2386348
[96] Zhang, H., Hong, Q., Yan, H., Yang, F., Guo, G.:
Event-based distributed $H_\infty$ filtering networks of 2-DOF quarter-car suspension systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 312-321.
DOI 10.1109/tii.2016.2569566
[97] Zhang, H., Wang, Z., Yan, H., Yang, F., Zhou, X.:
Adaptive event-triggered transmission scheme and $H_\infty$ filtering co-design over a filtering network with switching topology. IEEE Trans. Cybernet. 49 (2019), 12, 4296-4307.
DOI 10.1109/tcyb.2018.2862828 |
MR 3957647
[98] Zhang, L., Ning, Z., Wang, Z.:
Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels. IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 6, 559-572.
DOI 10.1109/tsmc.2015.2435700
[99] Zhang, P., Wang, J.:
Event-triggered observer-based tracking control for leader-follower multi-agent systems. Kybernetika 52 (2016), 4, 589-606.
DOI 10.14736/kyb-2016-4-0589 |
MR 3565771
[100] Zhang, W.-A., Dong, H., Guo, G., Yu, L.:
Distributed sampled-data $H_\infty$ filtering for sensor networks with nonuniform sampling periods. IEEE Trans. Industr. Inform. 10 (2014), 2, 871-881.
DOI 10.1109/tii.2014.2299897
[101] Zhang, X.-M., Han, Q.-L.:
State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Trans. Neural Networks Learning Syst. 313 (2018), 29, 1376-1381.
DOI 10.1109/tnnls.2017.2661862 |
MR 3867869
[102] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D.:
An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313 (2018), 392-401.
DOI 10.1016/j.neucom.2018.06.038
[103] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.:
Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica 7 (2020), 1, 1-17.
DOI 10.1109/jas.2019.1911651 |
MR 3841465
[104] Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F., He, Y.:
Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 13 (2019), 1, 1-16.
DOI 10.1049/iet-cta.2018.5188 |
MR 3888201
[105] Zhang, X.-M., Han, Q.-L., Ge, X.:
Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay. IEEE/CAA J. Automat. Sinica.
DOI 10.1109/jas.2020.1003111
[106] Zhu, S., Chen, C., Li, W., Yang, B., Guan, X.:
Distributed optimal consensus filter for target tracking in heterogeneous sensor networks. IEEE Trans. Cybernet. 43 (2013), 6, 1963-1976.
DOI 10.1109/tsmcb.2012.2236647
[107] Zhu, Y., Zhang, L., Zheng, W.:
Distributed $H_\infty$ filtering for a class of discrete-time Markov jump Lur'e systems with redundant channels. IEEE Trans. Industr. Electron. 63 (2016), 3, 1876-1885.
DOI 10.1109/tie.2015.2499169
[108] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.:
Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Automat. Control 62 (2017), 12, 6582-6588.
DOI 10.1109/tac.2017.2713353 |
MR 3743543
[109] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.:
Recursive filtering for time-varying systems with random access protocol. IEEE Trans. Automat. Control 64 (2019), 2, 720-727.
DOI 10.1109/tac.2017.2713353 |
MR 3912120
[110] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.:
Moving horizon estimation for networked time-delay systems under Round-Robin protocol. IEEE Trans. Automat. Control 64 (2019), 12, 5191-5198.
DOI 10.1109/tac.2019.2910167 |
MR 4044317
[111] Zou, L., Wang, Z., Han, Q.-L., Zhou, D.:
Full information estimation for linear time-varying systems with Round-Robin protocol: A recursive filter approach. IEEE Trans. Systems Man Cybernet.: Systems.
DOI 10.1109/tac.2018.2833154