[1] J., Anthonis,, A., Seuret,, J.-.P., Richard,, H., Ramon,: Design of a pressure control system with band time delay.
[6] A., Benabdallah,, I., Ellouze,, A., Hammami, M.: Practical exponential stability of perturbed triangular systems and separation principle.
[7] A., Benabdallah,, I., Ellouze,, A., Hammami, M.: Practical stability of nonlinear time-varying cascade systems.
[8] A., Benabdallah,, T., Kharrat,, C., Vivalda, J.:
On practical observers for nonlinear uncertain systems. Systems Control Lett. 57 (2008), 371-377.
DOI 10.14736/kyb-2015-1-0099 |
MR 2405104
[9] Y., Dong,, X., Wang,, S., Mei,, W., Li,:
Exponential stabilization of nonlinear uncertain systems with time-varying delay. J. Engrg. Math. 77 (2012), 225-237.
DOI 10.1007/s10665-012-9554-0 |
MR 2990665
[11] N., Echi,, A., Benabdallah,:
Delay-dependent stabilization of a class of time-delay nonlinear systems: LMI approach. Adv. Differ. Equ. 271 (2017), 1-13.
DOI 10.1186/s13662-017-1335-7 |
MR 3695397
[13] B., Hamed,, I., Ellouze,, A., Hammami, M.:
Practical uniform stability of nonlinear differential delay equation. Mediterr. J. Math. 8 (2011), 603-616.
DOI 10.1007/s00009-010-0083-7 |
MR 2860688
[14] B., Hamed,, A., Hammami, M.:
Practical stabilization of a class of uncertain time-varying nonlinear delay systems. J. Control Theory Appl. 7 (2009), 175-180.
DOI 10.1007/s11768-009-8017-2 |
MR 2526947
[15] M., Farza,, A., Sboui,, E., Cherrier,, M., M'Saad,:
High-gain observer for a class of time-delay nonlinear systems. Int. J. Control 83 (2010), 273-280.
DOI 10.1080/00207170903141069 |
MR 2606182
[16] A., Germani,, C., Manes,, P., Pepe,: An asymptotic state observer for a class of nonlinear delay systems.
[17] A., Germani,, C., Manes,, P., Pepe,:
Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36 (2000), 31-42.
MR 1760886 |
Zbl 1249.93146
[19] M., Ghanes,, De, Leon, J., J., Barbot,:
Observer design for nonlinear systems under unknown time-varying delays. IEEE Trans. Automat. Control 58 (2013), 1529-1534.
DOI 10.1109/TAC.2012.2225554 |
MR 3065135
[20] K., Hale, J., V., Lunel, S. M.:
Introduction to Functional Differential Equations. Springer, New York 1993.
MR 1243878 |
Zbl 0787.34002
[21] S., Ibrir,: Observer-based control of a class of time-delay nonlinear systems having triangular structure.
[22] X., Jia,, X., Chen,, S., Xu,, B., Zhang,, Z., Zhang,:
Adaptive output feedback control of nonlinear time-delay systems with application to chemical reactor systems. IEEE Trans. Ind. Electron. 64 (2017), 4792-4799.
DOI 10.1109/TIE.2017.2668996
[23] X., Jia,, S., Xu,, J., Chen,, Z., Li,, Y., Zou,:
Global output feedback practical tracking for time-delay systems with uncertain polynomial growth rate. J. Franklin Inst. 352 (2015), 5551-5568.
DOI 10.1016/j.jfranklin.2015.08.012 |
MR 3428380
[24] X., Jia,, S., Xu,, J., Lu,, Y., Li,, Y., Chu,, Z., Zhang,: Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form.
[26] M., Kwona, O., H., Parkb, J.: Exponential stability of uncertain dynamic systems including state delay.
[27] C., Lili,, Z., Ying,, Z., Xian,:
Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays. Neurocomputing 131 (2014), 105-112.
DOI 10.1016/j.neucom.2013.10.035
[28] S., Mondal,, K., Chung, W.: Adaptive observer for a class of nonlinear systems with time-varying delays.
[29] S., Mondie,, L., Kharitonov, V.:
Exponential estimates for retarded time delay systems: an LMI approach. IEEE Trans. Automat. Control 50 (2005), 268-273.
DOI 10.1016/j.jmaa.2014.12.019 |
MR 2116437
[30] Y., Muroya,, T., Kuniya,, L., Wang, J.:
Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure. J. Math. Anal. Appl. 425 (2015), 415-439.
DOI doi |
MR 3299671
[31] O., Naifar,, Ben, Makhlouf, A., A., Hammami, M., A., Ouali,:
On Observer design for a class of nonlinear systems including unknown time-delay. Mediterr. J. Math. 13 (2016), 2841-2851.
DOI 10.1007/s00009-015-0659-3 |
MR 3554282
[32] P., Pepe,, I., Karafyllis,:
Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hales form. Int. J. Control 86 (2013), 232-243.
DOI 10.1080/00207179.2012.723137 |
MR 3017700
[34] R., Villafuerte,, S., Mondie,, A., Poznyak,:
Practical stability of time-delay systems: LMI's approach. Eur. J. Control 2 (2011), 127-138.
DOI 10.3166/ejc.17.127-138 |
MR 2839109