Previous |  Up |  Next

Article

Title: On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums (English)
Author: Hung, Tran Loc
Author: Kien, Phan Tri
Author: Nhut, Nguyen Tan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 6
Year: 2019
Pages: 961-975
Summary lang: English
.
Category: math
.
Summary: Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated. (English)
Keyword: geometric random sums
Keyword: Gnedenko's transfer theorem
Keyword: Zolotarev probability metric
MSC: 60E07
MSC: 60F05
MSC: 60F99
MSC: 60G50
idZBL: Zbl 07217221
idMR: MR4077139
DOI: 10.14736/kyb-2019-6-0961
.
Date available: 2020-05-20T15:13:28Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148086
.
Reference: [1] S., Asmusen,: Applied Probability and Queues..Springer, 2003. MR 1978607, 10.1007/b97236
Reference: [2] S., Asmusen,: Ruin Probabilities..World Scientific, 2010. MR 1794582
Reference: [3] G., Bobkov, S.: Proximity of probability distributions in terms of Fourier-Stieltjes transform..Russian Math. Surveys 71 (2016), 6, 1021-1079. MR 3588939, 10.1070/rm9749
Reference: [4] L., Bon, J.: Exponential Approximations of Geometric Sums for Reliability..University of Sciences at Technologies, 2002.
Reference: [5] L., Bon, J.: Geometric Sums in reliability evaluation of regenerative systems..In: Kalashnikov Memorial Seminar 2002, pp. 161-163. MR 1471479
Reference: [6] M., Brown,: Error bounds for exponential approximation of geometric convolutions..Ann. Probab. 18 (1990), 3, 1388-1402. MR 1062073, 10.1214/aop/1176990750
Reference: [7] F., Daly,: Compound geometric approximation under a failure rate constraint..J. Appl. Prob. 53 (2016), 700-714. MR 3570089, 10.1017/jpr.2016.35
Reference: [8] L., Dobrushin, R.: Lemma on the limit of compound random functions..Uspekhi Mat. Nauk 10 (1955), 2(64), 157-159. MR 0070870, 10.4213/rm9274
Reference: [9] W., Feller,: An Introduction to Probability Theory and its Applications. Volume 2..John Wiley and Son, Inc., 1966. MR 0210154
Reference: [10] V., Gnedenko, B., G., Fahim,: On a transfer theorem..Dokl. Akad. Nauk SSSR 187 (1969), 1, 15-17. MR 0251771
Reference: [11] V., Gnedenko, B.: On some stability theorems..Lect. Notes Math. 982 (1983), 24. MR 0715458, 10.1007/bfb0082058
Reference: [12] V., Gnedenko, B., Y., Korolev, V.: Random Summations: Limit Theorems and Applications..CRC Press, New York 1996. MR 1387113
Reference: [13] L., Hung, T., T., L.,: On a Probability Metric Based on Trotter Operator..Vietnam Journal of Mathematics 35:1, (2007), 21-32. MR 2317431
Reference: [14] L., Hung, T.: On the rate of convergence in limit theorems for geometric sums..Southeast-Asian J. Sci. 2 (2013), 2, 117-130.
Reference: [15] L., Hung, T., N., Hau, T.: On the accuracy of approximation of the distribution of negative-binomial random sums by Gamma distribution..Kybernetika 54 (2018), 5, 921-936. MR 3893128, 10.14736/kyb-2018-5-0921
Reference: [16] V., Kalashnikov,: Geometric Sum: Bounds for Rare Events with Applications..Kluwer Academic Publishers, 1997. MR 1471479, 10.1007/978-94-017-1693-2
Reference: [17] B., Klebanov, L., M., Maniya, G., A., Melamed, I.: A problem of Zolotarev and analogs of infinitely divisible and stable distributions in the scheme for summing a random number of random variables..Theory Probab. Appl. 29 (1084), 4, 791-794. MR 0773445, 10.1137/1129104
Reference: [18] B., Klebanov, L.: Heavy Tailed Distributions..Research Gate, 2003.
Reference: [19] Y., Korolev, V., I., Zeifman, A.: A note on mixture representations for the Linnik and Mittag-Leffler distributions and their applications..J. Math. Sci. 218 (2016), 3, 314-327. MR 3553138, 10.1007/s10958-016-3032-6
Reference: [20] Y., Korolev, C., V., Dorofeeva, A.: Estimates for the concentration functions of random sums under weakened moment conditions (in Russian..Teor. Veroyatn. Primen. 62 (2017), 1, 104-121. MR 3633467
Reference: [21] A., I., V. Y. Korolev, Zeifman: Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations..J. Korean Statist. Soc. 46 (2017), 2, 161-181. MR 3648357, 10.1016/j.jkss.2016.07.001
Reference: [22] S., Kotz,, J., Kozubowski, T., K., Podgórsky,: The Laplace Distribution and Generalization..Springer Science and Business Media, LLC., 2001. MR 1935481, 10.1007/978-1-4612-0173-1
Reference: [23] M., Kruglov, V., Yu., Korolev, V.: Limit Theorems for Random Sums..Moscow University Press, Moscow 1990. MR 1072999
Reference: [24] Solym, Mawaki, Manou-Abi: Rate of convergence to alpha stable law using Zolotarev distance: technical report..Research Report, HAL Archives-Ouvertes 2017. 10.18642/jsata\_7100121914
Reference: [25] E., Sandhya,, N., Pillai, R.: On geometric infinitely divisibility..J. Kerala Statist. Assoc. 10 (1999), 01-07.
Reference: [26] E., Sandhya,, N., Pillai, R.: Renewal theory and geometric infinite divisibility..ProbStat. Models 2 (2003), 1-8.
Reference: [27] V., Petrov, V.: Limit Theorems of Probability Theory (Sequences of Independent Random Variables)..Clarendon Press Oxford, 1995. MR 1353441, 10.1017/s001309150002335x
Reference: [28] W., Rudin,: Principles of Mathematical Analysis..Mc Graw-Hill, Inc. 1976. MR 0385023, 10.1017/s0013091500008889
Reference: [29] M., Zolotarev, V.: Metric distances in spaces of random variables and their distributions..Mat. Sb. (N.S.) 101(143) (1976), 3, 416-454. MR 0467869, 10.1070/sm1976v030n03abeh002280
Reference: [30] M., Zolotarev, V.: Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces..Teor. Veroyatnost. i Primenen. 21 (1976), 4, 741-758. MR 0517338, 10.1137/1121086
Reference: [31] M., Zolotarev, V.: Probability metrics..Teor. Veroyatnost. i Primenen. 28 (1983), 2, 264-287. MR 0700210
.

Files

Files Size Format View
Kybernetika_55-2019-6_4.pdf 492.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo