Previous |  Up |  Next

Article

Keywords:
generalized Sasakian-space-form; Legendrian submanifold
Summary:
A submanifold $M^m$ of a generalized Sasakian-space-form $\overline{M}^{2n+1}(f_1,\allowbreak f_2,f_3)$ is said to be $C$-totally real submanifold if $\xi\in \Gamma(T^\bot M)$ and $\phi X\in \Gamma(T^\bot M)$ for all $X\in \Gamma(TM)$. In particular, if $m=n$, then $M^n$ is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.
References:
[1] Alegre P., Blair D. E., Carriazo A.: Generalized Sasakian-space-forms. Israel J. Math. 141 (2004), 157–183. DOI 10.1007/BF02772217 | MR 2063031
[2] Alegre P., Carriazo A.: Structures on generalized Sasakian-space-forms. Differential Geom. Appl. 26 (2008), no. 6, 656–666. DOI 10.1016/j.difgeo.2008.04.014 | MR 2474428
[3] Bejancu A.: Schouten–van Kampen and Vrănceanu connections on foliated manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 52 (2006), no. 1, 37–60. MR 2282431
[4] Blair D. E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, 509, Springer, Berlin, 1976. MR 0467588
[5] Carriazo A.: On generalized Sasakian-space-forms. Proc. of the Ninth International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, (2005), 31–39. MR 2136149
[6] Gołab S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), no. 3, 249–254. MR 0383275
[7] Lu Z.: Normal scalar curvature conjecture and its applications. J. Funct. Anal. 261 (2011), no. 5, 1248–1308. MR 2807100
[8] Mihai I.: On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms. Nonlinear Anal. 95 (2014), 714–720. DOI 10.1016/j.na.2013.10.009 | MR 3130556
[9] Mihai I.: On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms. Tohoku Math. J. (2) 69 (2017), no. 1, 43–53. DOI 10.2748/tmj/1493172127 | MR 3640013
[10] Olszak Z.: The Schouten van-Kampen affine connection adapted to an almost (para) contact metric structure. Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31–42. DOI 10.2298/PIM1308031O | MR 3137487
[11] Schouten J. A., van Kampen E. R.: Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde. Math. Ann. 103 (1930), 752–783 (German). DOI 10.1007/BF01455718 | MR 1512645
[12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. (N.S.) 2 (1976), no. 1, 131–190. DOI 10.4099/math1924.2.131 | MR 0589931
[13] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379. DOI 10.1090/S0002-9947-1989-1000553-9 | MR 1000553
[14] Webster S. M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geometry 13 (1978), no. 1, 25–41. DOI 10.4310/jdg/1214434345 | MR 0520599
[15] Wintgen P.: Sur l'inégalité de Chen-Willmore. C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 21, A993–A995 (French. English summary). MR 0540375
[16] Yano K., Kon M.: Anti-invariant Submanifolds. Lecture Notes in Pure and Applied Mathematics, 21, Marcel Dekker, New York, 1976. MR 0425849
[17] Yano K., Kon M.: Structures on Manifolds. Series in Pure Mathematics, 3, World Scientific Publishing, Singapore, 1984. MR 0794310
Partner of
EuDML logo