Previous |  Up |  Next

Article

Keywords:
approximate biflatness; Johnson pseudo-contractibility; Lipschitz algebra; triangular Banach algebra
Summary:
We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras ${\rm Lip}_{\alpha}(X)$ and ${\rm lip}_{\alpha}(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha<1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.
References:
[1] Askari-Sayah M., Pourabbas A., Sahami A.: Johnson pseudo-contractibility of certain Banach algebras and their nilpotent ideals. Anal. Math. 45 (2019), no. 3, 461–473. DOI 10.1007/s10476-019-0840-1 | MR 3995373
[2] Bade W. G., Curtis P. C. Jr., Dales H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 0896225
[3] Biyabani E., Rejali A.: Approximate and character amenability of vector-valued Lipschitz algebras. Bull. Korean Math. Soc. 55 (2018), no. 4, 1109–1124. MR 3845950
[4] Dales H. G.: Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR 1816726
[5] Dashti M., Nasr-Isfahani R., Soltani Renani S.: Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (2014), no. 1, 37–41. DOI 10.4153/CMB-2012-015-3 | MR 3150714
[6] Ghahramani F., Zhang Y.: Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Camb. Philos. Soc. 142 (2007), 111–123. DOI 10.1017/S0305004106009649 | MR 2296395 | Zbl 1118.46046
[7] Gourdeau F.: Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 351–355. DOI 10.1017/S0305004100067840 | MR 0974991
[8] Gourdeau F.: Amenability of Lipschitz algebras. Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 581–588. DOI 10.1017/S0305004100071267 | MR 1178007
[9] Hu Z., Monfared M. S., Traynor T.: On character amenable Banach algebras. Studia Math. 193 (2009), no. 1, 53–78. DOI 10.4064/sm193-1-3 | MR 2506414
[10] Kaniuth E., Lau A. T., Pym J.: On $\phi$-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. DOI 10.1017/S0305004107000874 | MR 2388235
[11] Kelley J. L.: General Topology. D. Van Nostrand Company, Toronto, 1955. MR 0070144 | Zbl 0518.54001
[12] Runde V.: Lectures on Amenability. Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR 1874893
[13] Sahami A., Pourabbas A.: Johnson pseudo-contractibility of certain semigroup algebras. Semigroup Forum 97 (2018), no. 2, 203–213. DOI 10.1007/s00233-017-9912-3 | MR 3852768
[14] Sahami A., Pourabbas A.: Johnson pseudo-contractibility of various classes of Banach algebras. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 2, 171–182. DOI 10.36045/bbms/1530065007 | MR 3819120
[15] Samei E., Spronk N., Stokke R.: Biflatness and pseudo-amenability of Segal algebras. Canad. J. Math. 62 (2010), no. 4, 845–869. DOI 10.4153/CJM-2010-044-4 | MR 2674704
[16] Weaver N.: Lipschitz Algebras. World Scientific Publishing Co., River Edge, 1999. MR 1832645
Partner of
EuDML logo