[4] Castillo J. M. F.:
$p$-converging operators and weakly-$p$-compact operators in $L_p$-spaces. Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54.
MR 1125690
[5] Castillo J. M. F., Sanchez F.:
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59.
MR 1245024
[6] Castillo J. M. F., Sánchez F.:
Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces. J. Math. Anal. Appl. 185 (1994), no. 2, 256–261.
DOI 10.1006/jmaa.1994.1246 |
MR 1283055
[7] Cilia R., Emmanuele G.:
Some isomorphic properties in $K(X,Y)$ and in projective tensor products. Colloq. Math. 146 (2017), no. 2, 239–252.
DOI 10.4064/cm6184-12-2015 |
MR 3622375
[8] Chen D., Chávez-Domínguez J. A., Li L.:
$p$-converging operators and Dunford–Pettis property of order $p$. J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066.
DOI 10.1016/j.jmaa.2018.01.051 |
MR 3765477
[9] Defant A., Floret K.:
Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
MR 1209438
[11] Dehghani M. B., Moshtaghioun S. M., Dehghani M.:
On the limited $p$-Schur property of some operator spaces. Int. J. Anal. Appl. 16 (2018), no. 1, 50–61.
MR 3758748
[13] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984.
MR 0737004
[14] Diestel J., Jarchow H., Tonge A.:
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297 |
Zbl 1139.47021
[15] Emmanuele G.:
A dual characterization of Banach spaces not containing $\ell_1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160.
MR 0861172
[17] Ghenciu I.:
Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products. Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329.
MR 3390279
[19] Ghenciu I.:
A note on some isomorphic properties in projective tensor products. Extracta Math. 32 (2017), no. 1, 1–24.
MR 3726522
[20] Ghenciu I.:
A note on Dunford–Pettis like properties and complemented spaces of operators. Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222.
MR 3815686
[22] Ghenciu I., Lewis P.:
The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324.
DOI 10.4064/cm106-2-11 |
MR 2283818
[23] Grothedieck A.:
Sur les applications lineaires faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129–173 (French).
DOI 10.4153/CJM-1953-017-4 |
MR 0058866
[24] Kačena M.:
On sequentially right Banach spaces. Extracta Math. 26 (2011), no. 1, 1–27.
MR 2908388
[26] Li L., Chen D., Chávez-Domínguez J. A.:
Pełczyński's property ($V^*$) of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442.
DOI 10.1002/mana.201600335 |
MR 3767145
[27] Pełczyński A.:
On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295
[28] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.:
Topological characterisation of weakly compact operators. J. Math. Anal. Appl. 325 (2007), no. 2, 968–974.
DOI 10.1016/j.jmaa.2006.02.066 |
MR 2270063
[29] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.:
Weakly compact operators and the strong$^*$ topology for a Banach space. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267.
MR 2747954
[31] Ryan R. A.:
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002.
MR 1888309 |
Zbl 1090.46001
[32] Salimi M., Moshtaghioun S. M.:
The Gelfand–Phillips property in closed subspace of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92.
DOI 10.15352/bjma/1313363004 |
MR 2792501
[33] Salimi M., Moshtaghioun S. M.:
A new class of Banach spaces and its relation with some geometric properties of Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages.
MR 2910729