Previous |  Up |  Next

Article

Keywords:
Lie ring; associative commutative ring; matrix
Summary:
Let $C$ be an associative commutative ring with 1. If $a\in C$, then $aC$ denotes the principal ideal generated by $a$. Let $l, m, n$ be nonzero elements of $C$ such that $mn \in lC$. The set of matrices $\left( \begin{smallmatrix} a_{11} & a_{12} a_{21} & -a_{11} \end{smallmatrix} \right) $, where $a_{11}\in lC$, $a_{12}\in mC$, $a_{21}\in nC$, forms a Lie ring under Lie multiplication and matrix addition. The paper studies properties of these Lie rings.
References:
[1] Bashkirov E. L.: On a class of Lie rings of $2\times 2$ matrices over associative commutative rings. Linear Multilinear Algebra 67 (2019), no. 3, 456–478. DOI 10.1080/03081087.2017.1422235 | MR 3909003
[2] Bashkirov E. L., Pekönür E.: On matrix Lie rings over a commutative ring that contain the special linear Lie ring. Comment. Math. Univ. Carolin. 57 (2016), no. 1, 1–6. MR 3478334
[3] Borevich, A. I., Shafarevich I. R.: Number Theory. Pure and Applied Mathematics, 20, Academic Press, New York, 1966. MR 0195803
[4] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, 84, Springer, New York, 1990. MR 1070716
[5] Koibaev V. A., Nuzhin Ya. N.: Subgroups of Chevalley groups and Lie rings of definable by a collection of additive subgroups of the original ring. Fundam. Prikl. Mat. 18 (2013), no. 1, 75–84 (Russian. English, Russian summary); translated in J. Math. Sci. (NY) 201 (2014), no. 4, 458–464. MR 3431766
[6] Nuzhin Ya. N.: Lie rings defined by the root system and family of additive subgroups of the initial ring. Proc. Steklov Inst. Math. 283 (2013), suppl. 1, S119–S125. MR 3476385
Partner of
EuDML logo