On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions.
(English).Mathematica Bohemica,
vol. 145
(2020),
issue 1,
pp. 71-73
Summary: This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere.
[5] Juutinen, P., Lindqvist, P., Manfredi, J. J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001), 699-717. DOI 10.1137/S0036141000372179 | MR 1871417 | Zbl 0997.35022
[7] Král, J.: A conjecture concerning subharmonic functions. Čas. Pěst. Mat. 110 (1985), page 415 Czech. DOI 10.21136/CPM.1985.118241
[8] Pokrovskiĭ, A. V.: A simple proof of the Radó and Král theorems on removability of the zero locus for analytic and harmonic functions. Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2015 (2015), 29-31. DOI 10.15407/dopovidi2015.07.029 | MR 3718287 | Zbl 1340.30135
[9] Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987). MR 0924157 | Zbl 0925.00005