Previous |  Up |  Next

Article

Keywords:
Fock space; variable exponent Lebesgue space; Bergman projection
Summary:
We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.
References:
[1] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. DOI 10.1016/j.na.2014.04.001 | MR 3200739 | Zbl 1288.30059
[2] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. DOI 10.1007/s00009-016-0701-0 | MR 3554324 | Zbl 1354.30049
[3] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces. Complex Anal. Oper. Theory 11 (2017), 1623-1638. DOI 10.1007/s11785-016-0573-0 | MR 3702967 | Zbl 1387.30081
[4] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). DOI 10.1007/978-3-0348-0548-3 | MR 3026953 | Zbl 1268.46002
[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[6] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. DOI 10.1016/j.na.2016.05.002 | MR 3516828 | Zbl 1360.46029
[7] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights. J. Oper. Theory 71 (2014), 381-410. DOI 10.7900/jot.2012apr10.1989 | MR 3214643 | Zbl 1313.47059
[8] Karapetyants, A., Samko, S.: Spaces $ BMO^{p(\cdot)}(\mathbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. DOI 10.1515/GMJ.2010.028 | MR 2719633 | Zbl 1201.30072
[9] Karapetyants, A. N., Samko, S. G.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. DOI 10.1134/S000143461607004X | MR 3588827 | Zbl 1364.30063
[10] Karapetyants, A. N., Samko, S. G.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. DOI 10.1080/17476933.2016.1140750 | MR 3500518 | Zbl 1351.30042
[11] Kokilashvili, V., Paatashvili, V.: On Hardy classes of analytic functions with a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. MR 2294576 | Zbl 1126.47031
[12] Kokilashvili, V., Paatashvili, V.: On the convergence of sequences of functions in Hardy classes with a variable exponent. Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. MR 2464049 | Zbl 1166.47033
[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. DOI 10.21136/CMJ.1991.102493 | MR 1134951 | Zbl 0784.46029
[14] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy-Orlicz spaces. Mem. Am. Math. Soc. 207 (2010), 74 pages. DOI 10.1090/S0065-9266-10-00580-6 | MR 2681410 | Zbl 1200.47035
[15] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman-Orlicz spaces. Trans. Am. Math. Soc. 365 (2013), 3943-3970. DOI 10.1090/S0002-9947-2013-05922-3 | MR 3055685 | Zbl 1282.47033
[16] Motos, J., Planells, M. J., Talavera, C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388 (2012), 775-787. DOI 10.1016/j.jmaa.2011.09.069 | MR 2869787 | Zbl 1244.46008
[17] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 German. DOI 10.4064/sm-3-1-200-211 | Zbl 0003.25203
[18] Tung, Y.-C. J.: Fock Spaces. Ph.D. Thesis, The University of Michigan (2005). MR 2706955
[19] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263, Springer, New York (2012). DOI 10.1007/978-1-4419-8801-0 | MR 2934601 | Zbl 1262.30003
Partner of
EuDML logo