Previous |  Up |  Next

Article

Keywords:
derived equivalence; tilting complex; generalized matrix algebra
Summary:
We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
References:
[1] Asashiba, H.: A covering technique for derived equivalence. J. Algebra 191 (1997), 382-415. DOI 10.1006/jabr.1997.6906 | MR 1444505 | Zbl 0871.16006
[2] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: Cluster categories and duplicated algebras. J. Algebra 305 (2006), 548-561. DOI 10.1016/j.jalgebra.2005.12.002 | MR 2264143 | Zbl 1114.16010
[3] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: $m$-cluster categories and $m$-replicated algebras. J. Pure Appl. Algebra 212 (2008), 884-901. DOI 10.1016/j.jpaa.2007.07.013 | MR 2363499 | Zbl 1143.16015
[4] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[5] Enochs, E., Torrecillas, B.: Flat covers over formal triangular matrix rings and minimal Quillen factorizations. Forum Math. 23 (2011), 611-624. DOI 10.1515/FORM.2011.021 | MR 2805196 | Zbl 1227.16002
[6] Gao, N., Psaroudakis, C.: Gorenstein homological aspects of monomorphism categories via Morita rings. Algebr. Represent. Theory 20 (2017), 487-529. DOI 10.1007/s10468-016-9652-1 | MR 3638357 | Zbl 1382.16008
[7] Green, E. L.: On the representation theory of rings in matrix form. Pac. J. Math. 100 (1982), 123-138. DOI 10.2140/pjm.1982.100.123 | MR 0661444 | Zbl 0502.16016
[8] Green, E. L., Psaroudakis, C.: On Artin algebras arising from Morita contexts. Algebr. Represent. Theory 17 (2014), 1485-1525. DOI 10.1007/s10468-013-9457-4 | MR 3260907 | Zbl 1317.16003
[9] Happel, D., Seidel, U.: Piecewise hereditary Nakayama algebras. Algebr. Represent. Theory 13 (2010), 693-704. DOI 10.1007/s10468-009-9169-y | MR 2736030 | Zbl 1217.16015
[10] Herscovich, E., Solotar, A.: Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions. J. Algebra 315 (2007), 852-873. DOI 10.1016/j.jalgebra.2007.05.014 | MR 2351897 | Zbl 1184.18013
[11] Iversen, B.: Cohomology of Sheaves. Universitext, Springer, Berlin (1986). DOI 10.1007/978-3-642-82783-9 | MR 0842190 | Zbl 1272.55001
[12] Ladkani, S.: On derived equivalences of lines, rectangles and triangles. J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. DOI 10.1112/jlms/jds034 | MR 3022711 | Zbl 1284.16008
[13] Li, L.: Stratifications of finite directed categories and generalized APR tilting modules. Commun. Algebra 43 (2015), 1723-1741. DOI 10.1080/00927872.2013.879157 | MR 3316816 | Zbl 1360.18003
[14] Li, L.: Derived equivalences between triangular matrix algebras. Commun. Algebra 46 (2018), 615-628. DOI 10.1080/00927872.2017.1327051 | MR 3764883 | Zbl 06875436
[15] Miličić, D.: Lectures on Derived Categories. Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
[16] Miyachi, J.-I.: Extensions of rings and tilting complexes. J. Pure Appl. Algebra 105 (1995), 183-194. DOI 10.1016/0022-4049(94)00145-6 | MR 1365875 | Zbl 0846.16005
[17] Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. DOI 10.1016/0022-4049(89)90081-9 | MR 1027750 | Zbl 0685.16016
[18] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. DOI 10.1112/jlms/s2-39.3.436 | MR 1002456 | Zbl 0642.16034
[19] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. DOI 10.1112/jlms/s2-43.1.37 | MR 1099084 | Zbl 0683.16030
[20] Xi, C.: Constructions of derived equivalences for algebras and rings. Front. Math. China 12 (2017), 1-18. DOI 10.1007/s11464-016-0593-0 | MR 3569663 | Zbl 1396.18010
[21] Zhang, S.: Partial tilting modules over $m$-replicated algebras. J. Algebra 323 (2010), 2538-2546. DOI 10.1016/j.jalgebra.2010.02.002 | MR 2602394 | Zbl 1242.16015
Partner of
EuDML logo