Summary: We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.
[1] Cai, H., Tan, Z.: Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations. Nonlinear Anal., Real World Appl. 32 (2016), 260-293. DOI 10.1016/j.nonrwa.2016.04.010 | MR 3514925 | Zbl 1348.35183
[2] Cai, H., Tan, Z.: Asymptotic stability of stationary solutions to the compressible bipolar Navier-Stokes-Poisson equations. Math. Methods Appl. Sci. 40 (2017), 4493-4513. DOI 10.1002/mma.4320 | MR 3672880 | Zbl 1373.35233
[4] Du, D. P., Li, J. Y., Zhang, K. J.: Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids. Commun. Math. Sci. 11 (2013), 541-546. DOI 10.4310/CMS.2013.v11.n2.a11 | MR 3002564 | Zbl 1305.76089
[8] Jiu, Q. S., Wang, Y. X., Xin, Z. P.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. DOI 10.1016/j.jde.2015.04.007 | MR 3360663 | Zbl 1319.35194
[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations. J. Differ. Equations 245 (2008), 1762-1774. DOI 10.1016/j.jde.2008.07.007 | MR 2433485 | Zbl 1154.35070
[11] Tan, Z., Wang, Y. J.: Blow-up of smooth solutions to the Navier-Stokes equations of compressible viscous heat-conducting fluids. J. Aust. Math. Soc. 88 (2010), 239-246. DOI 10.1017/S144678871000008X | MR 2629933 | Zbl 1191.35210
[12] Tang, T., Zhang, Z. J.: Blow-up of smooth solution to the compressible Navier-Stokes-Poisson equations. Bull. Malays. Math. Sci. Soc. 39 (2016), 1487-1497. DOI 10.1007/s40840-015-0256-4 | MR 3549976 | Zbl 1358.35133
[13] Wang, G. W., Guo, B. L.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. DOI 10.1002/mma.4384 | MR 3689262 | Zbl 1383.35034
[14] Wang, Y. Z., Wang, K. Y.: Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions. J. Differ. Equations 259 (2015), 25-47. DOI 10.1016/j.jde.2015.01.042 | MR 3335919 | Zbl 1317.35211
[15] Xie, H. Z.: Blow-up of smooth solutions to the Navier-Stokes-Poisson equations. Math. Methods Appl. Sci. 34 (2011), 242-248. DOI 10.1002/mma.1353 | MR 2779329 | Zbl 1206.35201
[18] Zhao, Z. Y., Li, Y. P.: Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force. Nonlinear Anal., Real World Appl. 16 (2014), 146-162. DOI 10.1016/j.nonrwa.2013.09.014 | MR 3123807 | Zbl 1297.35195