Previous |  Up |  Next

Article

Keywords:
primes; applications of sieve methods
Summary:
In this note, we show that the counting function of the number of composite positive integers $n\le x$ such that $\beta (n)=\sum _{p\mid n} p$ is a prime is of order of magnitude at least $x/(\log x)^3$ and at most $x/ \log x$.
References:
[1] Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16 (1962), 363–367. DOI 10.1090/S0025-5718-1962-0148632-7 | MR 0148632
[2] Chudakov, N.: On Goldbach-Vinogradov’s theorem. Ann. of Math. (2) 48 (1947), 515–545. DOI 10.2307/1969127 | MR 0021021
[3] De Koninck, J.-M., Luca, F.: Integers divisible by the sum of their prime factors. Mathematika 52 (2005), 69–77. DOI 10.1112/S0025579300000346 | MR 2261843
[4] De Koninck, J.-M., Luca, F.: Integers divisible by sums of powers of their prime factors. J. Number Theory 128 (2008), 557–563. DOI 10.1016/j.jnt.2007.01.010 | MR 2389855
[5] De Koninck, J.-M., Luca, F.: Analytic number theory. Exploring the anatomy of integers. Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, RI, 2012. MR 2919246
[6] De Koninck, J.-M., Sitaramachandra, R.R.: Sums involving the largest prime divisor of an integer. Acta Arith. 48 (1987), 3–8. MR 0893458
[7] Erdös, P., Pomerance, C.: On the largest prime factors of $n$ and $n+1$. Aequationes Math. 17 (1978), 311–321. DOI 10.1007/BF01818569 | MR 0480303
[8] Nelson, C., Penny, D.E., Pomerance, C.: 714 and 715. J. Recreational Math. 7 (1974), 87–89. MR 3821619
[9] Pomerance, C.: Ruth–Aaron numbers revisited. Paul Erdös and his Mathematics, vol. 11, János Bolyai Math. Soc., Budapest 1999, Bolyai Soc. Math. Stud., 2002, pp. 567–579. MR 1954715
[10] Wheeler, F.S.: Two differential-difference equations arising in number theory. Trans. Amer. Math. Soc. 318 (1990), 491–523. DOI 10.1090/S0002-9947-1990-0963247-X | MR 0963247
Partner of
EuDML logo