Previous |  Up |  Next

Article

Keywords:
coregular sequence; local homology; weakly colaskerian
Summary:
Let $I$ be an ideal of Noetherian ring $R$ and $M$ a finitely generated $R$-module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let $I_{M}:=\operatorname{Ann}_{R}(M/IM)$, we will prove that for any integer $n$ \begin{enumerate} \item[(i)] If $N$ is a weakly colaskerian linearly compact $R$-module such that $(0:_N {I_M})\neq 0$ then $$ \operatorname{width}_{I_M}(N)= \inf\{i\mid \operatorname{H}_i^{I_M}(N)\neq 0 \} =\inf\{i \mid \operatorname{H}_i^I(M,N)\neq 0 \}\,. $$ \item[(ii)] If $(R,\frak{m})$ is a Noetherian local ring and $N$ is an artinian $R$-module then \begin{multline*} \cup_{i<n}\operatorname{Cos}_R\big(\operatorname{H}_i^{I_M}(N)\big)=\cup_{i<n}\operatorname{Cos}_R\big(\operatorname{H}_i^I(M,N)\big)=\\ \cup_{i<n}\operatorname{Cos}_R\big(\operatorname{Tor}_i^R(M/IM,N)\big)\,, \end{multline*} \begin{multline*} \inf\{i \mid \operatorname{H}_i^{I_M}(N) \text{ is not Noetherian $R$-module\,} \}=\\ \inf\{i \mid \operatorname{H}_i^I(M,N) \mbox{\ is not Noetherian $R$-module\,}\}\,. \end{multline*} \end{enumerate}
References:
[1] Brodmann, M.P., Sharp, R.Y.: Local cohomology – An algebric introduction with geometric applications. Cambridge University Press, 1998. MR 1613627
[2] Cuong, N.T., Nam, T.T.: On the co-localization, Co-support and Co-associated primes of local homology modules. Vietnam J. Math. 29 (4) (2001), 359–368. MR 1934215
[3] Cuong, N.T., Nam, T.T.: On the representable linearly compact modules. Proc. Amer. Math. Soc. 130 (7) (2001), 1927–1936. DOI 10.1090/S0002-9939-01-06298-0 | MR 1896024
[4] Cuong, N.T., Nam, T.T.: The $I$-adic completion and local homology for Artinian modules. Math. Proc. Cambridge Philos. Soc. 131 (2001), 61–72. DOI 10.1017/S0305004101005126 | MR 1833074
[5] Cuong, N.T., Nam, T.T.: A local homology theory for linearly compact modules. J. Algebra 319 (2008), 4712–4737. DOI 10.1016/j.jalgebra.2007.11.030 | MR 2416740
[6] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Amer. Math. Soc. 133 (3) (2005), 655–660. DOI 10.1090/S0002-9939-04-07728-7 | MR 2113911 | Zbl 1103.13010
[7] Greenlees, J.P.C., May, J.P.: Derived functors of I-adic completion and local homology. J. Algebra 149 (1992), 438–453. DOI 10.1016/0021-8693(92)90026-I | MR 1172439
[8] Macdonald, I.G.: Duality over complete local rings. Topology 1 (1962), 213–235. DOI 10.1016/0040-9383(62)90104-0 | MR 0151491
[9] Macdonald, I.G.: Secondary representation of modules over a commutative ring. Symposia Mathematica 11 (1973), 23–43. MR 0342506
[10] Melkersson, L., Schenzel, P.: The co-localization of an artinian module. Proc. Edinburgh Math. Soc. 38 (1995), 121–131. MR 1317331
[11] Nam, T.T.: Co-support and Coartinian modules. Algebra Colloquium 15 (1) (2008), 83–96. DOI 10.1142/S1005386708000084 | MR 2371580
[12] Nam, T.T.: A finiteness reult for co-associated and associated primes of generalized local homology and cohomology modules. Comm. Algebra 37 (2009), 1748–1757. DOI 10.1080/00927870802216396 | MR 2526337
[13] Nam, T.T.: Left-derived functors of the generalized I-adic completion and generalized local homology. Comm. Algebra 38 (2010), 440–453. DOI 10.1080/00927870802578043 | MR 2598892
[14] Nam, T.T.: Generalized local homology for artinian modules. Algebra Colloquium 1 (2012), 11205–1212. MR 3073409
[15] Ooishi, A.: Matlis duality and the width of a modul. Hiroshima Math. J. 6 (1976), 573–587. DOI 10.32917/hmj/1206136213 | MR 0422243
[16] Shar, R.Y.: Steps in commutative algebra. London Mathematical Society Student Texts, vol. 19, Cambridge University Press, 1990. MR 1070568
[17] Tang, Z.: Local homology theory for artinian modules. Comm. Algebra 22 (1994), 1675–1684. DOI 10.1080/00927879408824928 | MR 1264734
[18] Yassemi, S.: Coassociated primes. Comm. Algebra 23 (1995), 1473–1498. DOI 10.1080/00927879508825288 | MR 1317409
[19] Yen, D.N., Nam, T.T.: Generalized local homology and duality. Int. J. Algebra Comput. 29 (3) (2019), 581–601. DOI 10.1142/S0218196719500152 | MR 3955823
[20] Zelinsky, D.: Linearly compact modules and rings. Amer. J. Math. 75 (1953), 79–90. DOI 10.2307/2372616 | MR 0051832
[21] Zöschinger, H.: Koatomare Moduln. Math. Z. 170 (1980), 221–232. MR 0564202
Partner of
EuDML logo