Previous |  Up |  Next

Article

Keywords:
left-invariant generalized Ricci solitons; harmonicity of invariant vector fields; homogeneous structures
Summary:
In [20] the existence of major differences about totally geodesic two-dimensional foliations between Riemannian and Lorentzian geometry of the Heisenberg group $H_{3}$ is proved. Our aim in this paper is to obtain a comparison on some other geometrical properties of these spaces. Interesting behaviours are found. Also the non-existence of left-invariant Ricci and Yamabe solitons and the existence of algebraic Ricci soliton in both Riemannian and Lorentzian cases are proved. Moreover, all of the descriptions of their homogeneous Riemannian and Lorentzian structures and their types are obtained. Besides, all the left-invariant generalized Ricci solitons and unit time-like vector fields which are spatially harmonic are completely determined.
References:
[1] Batat, W., Onda, K.: Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. J. Geom. Phys. 114 (2017), 138–152. DOI 10.1016/j.geomphys.2016.11.018 | MR 3610038
[2] Batat, W., Rahmani, S.: Homogeneous Lorentzian structures on the generalized Heisenberg group. Differ. Geom. Dyn. Syst. 12 (2010), 12–17. MR 2606543
[3] Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S.: Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math. 188 (2012), 385–403. DOI 10.1007/s11856-011-0124-3 | MR 2897737
[4] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geom. Dedicata 127 (2007), 99–119. DOI 10.1007/s10711-007-9163-7 | MR 2338519
[5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498–515. DOI 10.1016/j.geomphys.2010.11.001 | MR 2746133
[6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2) (2012), 411–425. DOI 10.2478/s11533-011-0109-9 | MR 2886549
[7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons. Mediterr. J. Math. 14 (2017), 1–21. DOI 10.1007/s00009-017-1019-2 | MR 3707300
[8] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80 (2014), 15–25. DOI 10.1016/j.geomphys.2014.02.007 | MR 3188790
[9] Fastenakels, J., Munteanu, M.I., Van Der Veken, J.: Constant angle surfaces in the Heisenberg group. J. Acta Math. 27 (4) (2011), 747–756. MR 2776411
[10] Gadea, P.M., Oubina, J.A.: Reductive homogeneous pseudo-Riemannian manifolds. Monatsh. Math. 124 (1997), 17–34. DOI 10.1007/BF01320735 | MR 1457209
[11] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups. Arch. Math. (Basel) 73 (1999), 311–320. DOI 10.1007/s000130050403 | MR 1710084
[12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold. J. Geom. Phys. 51 (2004), 82–100. DOI 10.1016/j.geomphys.2003.09.008 | MR 2078686
[13] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. DOI 10.1007/BF00151525 | MR 0505561 | Zbl 0378.53018
[14] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lorentzian Lie groups. to appear in Georgian Math. J. MR 4069964
[15] Nasehi, M., Aghasi, M.: On the geometry of para-hypercomplex 4-dimensional Lie groups. J. Geom. Phys. 132 (2018), 230–238. DOI 10.1016/j.geomphys.2018.06.008 | MR 3836779
[16] Nasehi, M., Aghasi, M.: On the geometry of some solvable extensions of the Heisenberg group. Czechoslovak Math. J. 68 (3) (2018), 723–740. DOI 10.21136/CMJ.2018.0635-16 | MR 3851887
[17] Nurowski, P., Randall, M.: Generalized Ricci solitons. J. Geom. Anal. 26 (2) (2016), 1280–1345. DOI 10.1007/s12220-015-9592-8 | MR 3472837
[18] Rahmani, N., Rahmani, S.: Structures homogenes lorentziennes sur le groupe de Heisenberg group I. J. Geom. Phys. 13 (1994), 254–258. DOI 10.1016/0393-0440(94)90033-7 | MR 1269242
[19] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133–140. DOI 10.1007/s10711-005-9030-3 | MR 2239452
[20] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. J. Geom. Phys. 9 (3) (1992), 295–302, (French). DOI 10.1016/0393-0440(92)90033-W | MR 1171140
[21] Tricerri, F., Vanhecke, L.: Homogeneous structures on Riemannian manifolds. Cambridge University Press, 1983. MR 0712664
Partner of
EuDML logo