[1] Badin, G., Barry, A. M.:
Collapse of generalized Euler and surface quasigeostrophic point vortices. Phys. Rev. E 98 (2018), 023110.
DOI 10.1103/PhysRevE.98.023110
[3] Blender, R., Badin, G.:
Construction of Hamiltonian and Nambu forms for the shallow water equations. Fluids 2 (2017), 24.
DOI 10.3390/fluids2020024
[4] Gaßmann, A.:
A global hexagonal C-grid non-hydrostatic dynamical core (icon-iap) designed for energetic consistency. Q. J. R. Meteorol. Soc. 139 (2013), 152–175.
DOI 10.1002/qj.1960
[5] Gaßmann, A.:
Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives. Meteorol. Z. 23 (2014), 467–481.
DOI 10.1127/metz/2014/0568
[6] Hirt, M., Schielicke, L., Müller, A., Névir, P.:
Statistics and dynamics of blockings with a point vortex model. Tellus A 70 (2018), 1–20.
DOI 10.1080/16000870.2018.1458565
[8] Névir, P., Blender, R.:
A Nambu representation of incompressible hydrodynamics using helicity and enstrophy. J. Phys. A 26 (1993), L1189.
MR 1253027
[9] Névir, P., Sommer, M.:
Energy-vorticity theory of ideal fluid mechanics. J. Atmos. Sci. 66 (2009), 2073–2084.
DOI 10.1175/2008JAS2897.1
[10] Procházková, Z.: Application of the Nambu mechanics formalism in atmospheric dynamics. Bakalářská práce. MFF UK, 2019.
[11] Salazar, R., Kurgansky, M. V.:
Nambu brackets in fluid mechanics and magnetohydrodynamics. J. Phys. A 43 (2010), 305501.
MR 2659627
[13] Sommer, M., Névir, P.:
A conservative scheme for the shallow-water system on a staggered geodesic grid based on a Nambu representation. Q. J. R. Meteorol. Soc. 135 (2009), 485–494.
DOI 10.1002/qj.368