[1] Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.:
Hadamard-type fractional differential equations, inclusions and inequalities. 2017, Springer International Publishing,
MR 3616285
[2] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.:
A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdélyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions. Math. Model. Anal., 22, 2, 2017, 121-139,
DOI 10.3846/13926292.2017.1274920 |
MR 3625429
[3] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.:
Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdélyi-Kober Type Integral Boundary Conditions. Filomat, 31, 14, 2017, 4515-4529,
DOI 10.2298/FIL1714515A |
MR 3730375
[4] Agarwal, R.P., O'Regan, D.:
Infinite Interval Problems for Differential, Difference and Integral Equations. 2001, Kluwer Academic, Dordrecht,
MR 1845855 |
Zbl 0988.34002
[5] Bartle, R.G.:
A modern theory of integration. 32, 2001, Amer. Math. Soc., Providence, Rhode Island,
MR 1817647
[6] Corduneanu, C.:
Integral Equations and Stability of Feedback Systems. 1973, Academic Press, New York,
MR 0358245 |
Zbl 0273.45001
[7] Das, S.:
Functional Fractional Calculus for System Identification and Controls. 2008, Springer-Verlag Berlin Heidelberg,
MR 2414740
[8] Diethelm, K.:
The Analysis of Fractional Differential Equations. 2010, Springer, Berlin,
MR 2680847 |
Zbl 1215.34001
[9] Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.:
Theory and Applications of Fractional Differential Equations. 2006, Elsevier Science B.V, Amsterdam,
MR 2218073 |
Zbl 1092.45003
[10] Kiryakova, V.:
A brief story about the operators of the generalized fractional calculus. Frac. Calc. Appl. Anal., 11, 2, 2008, 203-220,
MR 2401328
[11] Kiryakova, V.:
Generalized Fractional Calculus and Applications. 1994, Longman and John Wiley, New York,
MR 1265940
[12] Kiryakova, V., Luchko, Y.: Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys., 11, 10, 2013, 1314-1336,
[13] Liu, X., Jia, M.:
Multiple solutions of nonlocal boundary value problems for fractional differential equations on half-line. Electron. J. Qual. Theory Differ. Equ., 56, 1-14.
MR 2825141
[14] Luchko, Y.:
Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal., 7, 3, 2007, 339-364,
MR 2252570
[15] Luchko, Y., Trujillo, J.:
Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal., 10, 3, 2007, 249-267,
MR 2382781
[16] Maagli, H., Dhifli, A.:
Positive solutions to a nonlinear fractional Dirichlet problem on the half-space. Electron. J. Differ. Equ., 50, 2014, 1-7,
MR 3177559
[17] Mathai, A.M., Haubold, H.J.:
Erdélyi-Kober Fractional Calculus. 2018, Springer Nature, Singapore Pte Ltd,
MR 3838388
[18] Ntouyas, S.K.:
Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opuscula Math., 33, 1, 2013, 117-138,
DOI 10.7494/OpMath.2013.33.1.117 |
MR 3008027
[20] Podlubny, I.:
Fractional Differential Equations, Mathematics in Science and Engineering. 1999, Academic Press, New York,
MR 1658022
[21] Sabatier, J., Agrawal, O.P., Machado, J.A. Tenreiro:
Advances in Fractional Calculus Theoretical Developments and Applicationsin Physics and Engineering. 2007, Springer,
MR 2432163
[22] Samko, S.G., Kilbas, A.A., Marichev, O.I.:
Fractional Integral and Derivatives Theory and Applications. 1993, Gordon and Breach, Switzerland,
MR 1347689
[23] A1-Saqabi, B., Kiryakova, V.S.:
Explicit solutions of fractional integral and differential equations involving Erdé1yi-Kober operators. Appl. Math. Comput., 95, 1998, 1-13,
MR 1630272
[24] Sneddon, I.N.:
Mixed Boundary Value Problems in Potential Theory. 1966, North-Holland Publ., Amsterdam,
MR 0216018
[25] Sneddon, I.N.:
The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications. Lect Notes Math, 457, 1975, 37-79, Springer-Verlag, New York,
DOI 10.1007/BFb0067097 |
MR 0487301
[26] Sneddon, I.N.:
The Use of Operators of Fractional Integration in Applied Mathematics. 1979, RWN Polish Sci. Publ., Warszawa-Poznan,
MR 0604924
[27] Sun, Q., Meng, S., Cu, Y.:
Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance. Adv. Difference Equ., 2018, 243,
MR 3829286
[28] Yan, B., Liu, Y.:
Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line. Appl. Math. Comput., 147, 3, 2004, 629-644,
MR 2011077 |
Zbl 1045.34009
[29] Yan, B., O'Regan, D., Agarwal, and R.P.:
Unbounded solutions for singular boundary value problems on the semi-infinite interval Upper and lower solutions and multiplicity. Int. J. Comput. Appl. Math., 197, 2, 2006, 365-386,
MR 2260412
[31] Zhao, X., Ge, W.:
Existence of at least three positive solutions for multi-point boundary value problem on infinite intervals with p-Laplacian operator. J. Appl. Math. Comput., 28, 1, 2008, 391-403,
DOI 10.1007/s12190-008-0113-9 |
MR 2430946