[1] Adámek J., Gumm H. P., Trnková V.:
Presentation of set functors: a coalgebraic perspective. J. Logic Comput. 20 (2010), no. 5, 991–1015.
DOI 10.1093/logcom/exn090 |
MR 2725166
[2] Adámek J., Porst H. E.: From varieties of algebras to covarieties of coalgebras. Coalgebraic Methods in Computer Science (a Satellite Event of ETAPS 2001), Electronic Notes in Theoretical Computer Science 44 (2001), no. 1, 27–46.
[5] Barto L., Bulín J., Krokhin A., Opršal J.:
Algebraic approach to promise constraint satisfaction. available at arXiv:1811.00970v3 [cs.CC] (2019), 73 pages.
MR 4003368
[6] Barto L., Krokhin A., Willard R.:
Polymorphisms, and how to use them. The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, 7, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pages 1–44.
MR 3631047
[8] Barto L., Zima P.:
Every group is representable by all natural transformations of some set-functor. Theory Appl. Categ. 14 (2005), no. 13, 294–309.
MR 2182678
[9] Bulatov A. A.:
A dichotomy theorem for nonuniform CSPs. 58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 319–330.
MR 3734240
[11] García O. C., Taylor W.:
The lattice of interpretability types of varieties. Mem. Amer. Math. Soc. 50 (1984), no. 305, 125 pages.
MR 0749524
[14] Koubek V.:
Set functors. Comment. Math. Univ. Carolin. 12 (1971), 175–195.
MR 0286860
[16] Pultr A., Trnková V.:
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Mathematical Library, 22, North-Holland Publishing, Amsterdam, 1980.
MR 0563525
[18] Trnková V.:
Universal categories. Comment. Math. Univ. Carolinae 7 (1966), 143–206.
MR 0202808
[19] Trnková V.:
Some properties of set functors. Comment. Math. Univ. Carolinae 10 (1969), 323–352.
MR 0252474
[20] Trnková V.:
On descriptive classification of set-functors. I. Comment. Math. Univ. Carolinae 12 (1971), 143–174.
MR 0294445
[21] Trnková V.:
On descriptive classification of set-functors. II. Comment. Math. Univ. Carolinae 12 (1971), 345–357.
MR 0294446
[22] Trnková V.:
Universal concrete categories and functors. Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 239–256.
MR 1239471
[23] Trnková V.:
Amazingly extensive use of Cook continuum. Math. Japon. 51 (2000), no. 3, 499–549.
MR 1757312
[26] Zhuk D.:
A proof of CSP dichotomy conjecture. 2017 58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 331–342.
MR 3734241