Previous |  Up |  Next

Article

Keywords:
set functor; universal category; full embedding
Summary:
It is shown that every concretizable category can be fully embedded into the category of accessible set functors and natural transformations.
References:
[1] Adámek J., Gumm H. P., Trnková V.: Presentation of set functors: a coalgebraic perspective. J. Logic Comput. 20 (2010), no. 5, 991–1015. DOI 10.1093/logcom/exn090 | MR 2725166
[2] Adámek J., Porst H. E.: From varieties of algebras to covarieties of coalgebras. Coalgebraic Methods in Computer Science (a Satellite Event of ETAPS 2001), Electronic Notes in Theoretical Computer Science 44 (2001), no. 1, 27–46.
[3] Barto L.: Finitary set endofunctors are alg-universal. Algebra Universalis 57 (2007), no. 1, 15–26. DOI 10.1007/s00012-007-2011-7 | MR 2326923
[4] Barto L.: The category of varieties and interpretations is alg-universal. J. Pure Appl. Algebra 211 (2007), no. 3, 721–731. DOI 10.1016/j.jpaa.2007.04.001 | MR 2344225
[5] Barto L., Bulín J., Krokhin A., Opršal J.: Algebraic approach to promise constraint satisfaction. available at arXiv:1811.00970v3 [cs.CC] (2019), 73 pages. MR 4003368
[6] Barto L., Krokhin A., Willard R.: Polymorphisms, and how to use them. The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, 7, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pages 1–44. MR 3631047
[7] Barto L., Opršal J., Pinsker M.: The wonderland of reflections. Israel J. Math. 223 (2018), no. 1, 363–398. DOI 10.1007/s11856-017-1621-9 | MR 3773066
[8] Barto L., Zima P.: Every group is representable by all natural transformations of some set-functor. Theory Appl. Categ. 14 (2005), no. 13, 294–309. MR 2182678
[9] Bulatov A. A.: A dichotomy theorem for nonuniform CSPs. 58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 319–330. MR 3734240
[10] Freyd P. J.: Concreteness. J. Pure Appl. Algebra 3 (1973), 171–191. DOI 10.1016/0022-4049(73)90031-5 | MR 0322006
[11] García O. C., Taylor W.: The lattice of interpretability types of varieties. Mem. Amer. Math. Soc. 50 (1984), no. 305, 125 pages. MR 0749524
[12] Hedrlín Z., Pultr A.: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392–406. DOI 10.1215/ijm/1256054991 | MR 0191858
[13] Isbell J. R.: Two set-theoretical theorems in categories. Fund. Math. 53 (1963), 43–49. DOI 10.4064/fm-53-1-43-49 | MR 0156884
[14] Koubek V.: Set functors. Comment. Math. Univ. Carolin. 12 (1971), 175–195. MR 0286860
[15] Kučera L.: Every category is a factorization of a concrete one. J. Pure Appl. Algebra 1 (1971), no. 4, 373–376. DOI 10.1016/0022-4049(71)90004-1 | MR 0299548
[16] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Mathematical Library, 22, North-Holland Publishing, Amsterdam, 1980. MR 0563525
[17] Rutten J. J. M. M.: Universal coalgebra: a theory of systems. Modern Algebra and Its Applications, Nashville 1996, Theoret. Comput. Sci. 249 (2000), no. 1, 3–80. DOI 10.1016/S0304-3975(00)00056-6 | MR 1791953
[18] Trnková V.: Universal categories. Comment. Math. Univ. Carolinae 7 (1966), 143–206. MR 0202808
[19] Trnková V.: Some properties of set functors. Comment. Math. Univ. Carolinae 10 (1969), 323–352. MR 0252474
[20] Trnková V.: On descriptive classification of set-functors. I. Comment. Math. Univ. Carolinae 12 (1971), 143–174. MR 0294445
[21] Trnková V.: On descriptive classification of set-functors. II. Comment. Math. Univ. Carolinae 12 (1971), 345–357. MR 0294446
[22] Trnková V.: Universal concrete categories and functors. Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 239–256. MR 1239471
[23] Trnková V.: Amazingly extensive use of Cook continuum. Math. Japon. 51 (2000), no. 3, 499–549. MR 1757312
[24] Trnková V., Barkhudaryan A.: Some universal properties of the category of clones. Algebra Universalis 47 (2002), no. 3, 239–266. DOI 10.1007/s00012-002-8188-x | MR 1918729
[25] Vinárek J.: A new proof of the Freyd's theorem. J. Pure Appl. Algebra 8 (1976), no. 1, 1–4. DOI 10.1016/0022-4049(76)90019-0 | MR 0399206
[26] Zhuk D.: A proof of CSP dichotomy conjecture. 2017 58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 331–342. MR 3734241
Partner of
EuDML logo