[1] Agarwal, A., Negahban, S., Wainwright, M. J.:
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. Ann. Statist. 40 (2012), 2, 1171-1197.
DOI 10.1214/12-aos1000 |
MR 2985947
[2] Bai, J., Li, K., al., et:
Statistical analysis of factor models of high dimension. Ann. Statist. 40 (2012), 1, 436-465.
DOI 10.1214/11-AOS966 |
MR 3014313
[4] Bai, J., Ng, S.:
Large dimensional factor analysis. Found. Trends Econometr. 3 (2008), 2, 89-163.
DOI 10.1561/0800000002
[5] Bertsimas, D., Copenhaver, M. S., Mazumder, R.:
Certifiably optimal low rank factor analysis. J. Machine Learning Res. 18 (2017), 29, 1-53.
MR 3634896
[6] Ciccone, V., Ferrante, A., Zorzi, M.:
Factor analysis with finite data. In: Proc. 56th Annual Conference on Decision and Control (CDC), VIC, Melbourne 2017, pp. 4046-4051.
DOI 10.1109/cdc.2017.8264253
[7] Ciccone, V., Ferrante, A., Zorzi, M.:
Robust identification of "Sparse Plus Low-rank" graphical models: An optimization approach. In: Proc. 2018 IEEE Conference on Decision and Control (CDC), Miami Beach 2018, pp. 2241-2246.
DOI 10.1109/cdc.2018.8619796
[8] Ciccone, V., Ferrante, A., Zorzi, M.:
Factor models with real data: A robust estimation of the number of factors. IEEE Trans. Automat. Control 64 (2019), 6, 2412-2425.
DOI 10.1109/tac.2018.2867372 |
MR 3960088
[9] Deistler, M., Zinner, C.:
Modelling high-dimensional time series by generalized linear dynamic factor models: An introductory survey. Comm. Inform. Systems 7 (2007), 2, 153-166.
DOI 10.4310/cis.2007.v7.n2.a3 |
MR 2344194
[10] Riccia, G. Della, Shapiro, A.:
Minimum rank and minimum trace of covariance matrices. Psychometrika 47 (1982), 443-448.
DOI 10.1007/bf02293708 |
MR 0691830
[11] Fazel, M.: Matrix rank minimization with applications. Elec. Eng. Dept. Stanford University 54 (2002), 1-130.
[12] Fazel, M., Hindi, H., Boyd, S.:
Rank minimization and applications in system theory. In: Proc. American Control Conference 4 (2004), pp. 3273-3278.
DOI 10.23919/acc.2004.1384521
[13] Geweke, J.: The dynamic factor analysis of economic time series models. In: Latent Variables in Socio-Economic Models, SSRI workshop series, North-Holland 1977, pp. 365-383.
[18] Lax, P. D.:
Linear Algebra and Its Applications. Second edition. Wiley-Interscience, 2007.
MR 2356919
[20] Ning, L., Georgiou, T. T., Tannenbaum, A., Boyd, S. P.:
Linear models based on noisy data and the Frisch scheme. SIAM Rev. 57 (2015), 2, 167-197.
DOI 10.1137/130921179 |
MR 3345338
[21] Reiersøl, O.:
Identifiability of a linear relation between variables which are subject to error. Econometrica: J. Economet. Soc. 18 (1950), 4, 375-389.
DOI 10.2307/1907835 |
MR 0038054
[23] Shapiro, A.:
Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis. Psychometrika 47 (1982), 2, 187-199.
DOI 10.1007/bf02296274 |
MR 0667012
[24] Shapiro, A., Berge, J. M. F. Ten:
Statistical inference of minimum rank factor analysis. Psychometrika 67 (2002), 1, 79-94.
DOI 10.1007/bf02294710 |
MR 1960829