Previous |  Up |  Next

Article

Keywords:
Henstock-Kurzweil integral
Summary:
We study a scale of integrals on the real line motivated by the $MC_{\alpha }$ integral by Ball and Preiss and some recent multidimensional constructions of integral. These integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most of the results are of comparison nature. Further, we show that our indefinite integrals are a.e. approximately differentiable. An example of approximate discontinuity of an indefinite integral is also presented.
References:
[1] Ball, T., Preiss, D.: Monotonically controlled integrals. Mathematics Almost Everywhere. In Memory of Solomon Marcus World Scientific Publishing, Hackensack A. Bellow et al. (2018), 69-92. DOI 10.1142/9789813237315_0005 | MR 3838200
[2] Bendová, H., Malý, J.: An elementary way to introduce a Perron-like integral. Ann. Acad. Sci. Fenn., Math. 36 (2011), 153-164. DOI 10.5186/aasfm.2011.3609 | MR 2797688 | Zbl 1225.26016
[3] Bongiorno, B.: The Henstock-Kurzweil integral. Handbook of Measure Theory. Vol. I and II North-Holland, Amsterdam (2002), 587-615 E. Pap. DOI 10.1016/B978-044450263-6/50014-2 | MR 1954623 | Zbl 1024.26004
[4] Burkill, J. C.: The approximately continuous Perron integral. Math. Z. 34 (1932), 270-278. DOI 10.1007/BF01180588 | MR 1545252 | Zbl 0002.38604
[5] Pauw, T. De, Pfeffer, W. F.: Distributions for which $ div v=F$ has a continuous solution. Commun. Pure Appl. Math. 61 (2008), 230-260. DOI 10.1002/cpa.20204 | MR 2368375 | Zbl 1137.35014
[6] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris Sér. I Math. 154 (1912), 859-862 French. Zbl 43.0360.01
[7] Denjoy, A.: Sur la dérivation et son calcul inverse. C. R. Acad. Sci., Paris Sér. I Math. 162 (1916), 377-380 French. MR 0062821 | Zbl 46.0381.02
[8] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). MR 1158660 | Zbl 0804.28001
[9] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[10] Gordon, R. A.: Some comments on an approximately continuous Khintchine integral. Real Anal. Exch. 20 (1994-95), 831-841. DOI 10.2307/44152566 | MR 1348106 | Zbl 0847.26011
[11] Hencl, S.: On the notions of absolute continuity for functions of several variables. Fundam. Math. 173 (2002), 175-189. DOI 10.4064/fm173-2-5 | MR 1924813 | Zbl 1002.26007
[12] Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. London Math. Soc., III. Ser. 11 (1961), 402-418. DOI 10.1112/plms/s3-11.1.402 | MR 0132147 | Zbl 0099.27402
[13] Henstock, R.: Theory of Integration. Butterworths Mathematical Texts. Butterworths & Co., London (1963). MR 0158047 | Zbl 0154.05001
[14] Henstock, R.: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). MR 1134656 | Zbl 0745.26006
[15] Honzík, P., Malý, J.: Non-absolutely convergent integrals and singular integrals. Collect. Math. 65 (2014), 367-377. DOI 10.1007/s13348-013-0103-6 | MR 3241000 | Zbl 1305.26022
[16] Jarník, J., Kurzweil, J.: A non-absolutely convergent integral which admits $C^1$-transformations. Čas. Pěst. Mat. 109 (1984), 157-167. MR 0744873 | Zbl 0555.26005
[17] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (1985), 116-139. DOI 10.21136/CMJ.1985.102001 | MR 0779340 | Zbl 0614.26007
[18] Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral. Czech. Math. J. 38 (1988), 8-48. DOI 10.21136/CMJ.1988.102199 | MR 0925939 | Zbl 0669.26006
[19] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral. Čas. Pěst. Mat. 108 (1983), 356-380. MR 0727536 | Zbl 0555.26004
[20] Jurkat, W. B.: The divergence theorem and Perron integration with exceptional sets. Czech. Math. J. 43 (1993), 27-45. DOI 10.21136/CMJ.1993.128388 | MR 1205229 | Zbl 0789.26005
[21] Khintchine, A.: Sur une extension de l'intégrale de M. Denjoy. C. R. Acad. Sci. Paris, Sér. I Math. 162 (1916), 287-291 French. Zbl 46.0381.01
[22] Kubota, Y.: An integral of the Denjoy type. Proc. Japan Acad. 40 (1964), 713-717. DOI 10.3792/pja/1195521564 | MR 0178113 | Zbl 0141.24601
[23] Kuncová, K.: $BV$-packing integral in $\Bbb R^n$. \ Available at https://arxiv.org/abs/1903.04908 (2019). MR 4122842
[24] Kuncová, K., Malý, J.: Non-absolutely convergent integrals in metric spaces. J. Math. Anal. Appl. 401 (2013), 578-600. DOI 10.1016/j.jmaa.2012.12.044 | MR 3018009 | Zbl 1264.26015
[25] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[26] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik, Bd. 26. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980), German. DOI 10.1112/blms/16.4.432 | MR 0597703 | Zbl 0441.28001
[27] Lusin, N.: Sur les propriétés de l'intégrale de M. Denjoy. C. R. Acad. Sci. Paris Sér. I Math. 155 (1912), 1475-1477 French. MR 0067182 | Zbl 43.0360.03
[28] Malý, J.: Non-absolutely convergent integrals with respect to distributions. Ann. Mat. Pura Appl. (4) 193 (2014), 1457-1484. DOI 10.1007/s10231-013-0338-6 | MR 3262642 | Zbl 1304.26006
[29] Malý, J., Pfeffer, W. F.: Henstock-Kurzweil integral on BV sets. Math. Bohem. 141 (2016), 217-237. DOI 10.21136/MB.2016.16 | MR 3499785 | Zbl 06587863
[30] Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (1981), 614-632. DOI 10.21136/CMJ.1981.101777 | MR 0631606 | Zbl 0562.26004
[31] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel: The Influence of his Work on Mathematics and The Physical Sciences. Int. Christoffel Sym., Aachen and Monschau, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. DOI 10.1007/978-3-0348-5452-8_55 | MR 0661109 | Zbl 0562.26003
[32] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications. Series in Real Analysis 15. World Scientific Publishing, Hackensack (2018). DOI 10.1142/9432 | MR 3839599 | Zbl 06758513
[33] Novikov, A., Pfeffer, W. F.: An invariant Riemann type integral defined by figures. Proc. Am. Math. Soc. 120 (1994), 849-853. DOI 10.1090/S0002-9939-1994-1182703-4 | MR 1182703 | Zbl 0808.26006
[34] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber 14 (1914), 1-16 German. Zbl 45.0445.01
[35] Pfeffer, W. F.: Une intégrale Riemannienne et le théorème de divergence. C. R. Acad. Sci. Paris, Sér. I Math. 299 (1984), 299-301 French. MR 0761251 | Zbl 0574.26009
[36] Pfeffer, W. F.: The multidimensional fundamental theorem of calculus. J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. DOI 10.1017/s1446788700029293 | MR 0896622 | Zbl 0638.26011
[37] Pfeffer, W. F.: The Gauss-Green theorem. Adv. Math. 87 (1991), 93-147. DOI 10.1016/0001-8708(91)90063-D | MR 1102966 | Zbl 0732.26013
[38] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511574764 | MR 1816996 | Zbl 0980.26008
[39] Pfeffer, W. F.: Derivatives and primitives. Sci. Math. Jpn. 55 (2002), 399-425. MR 1887074 | Zbl 1010.26012
[40] Preiss, D., Thomson, B. S.: The approximate symmetric integral. Can. J. Math. 41 (1989), 508-555. DOI 10.4153/CJM-1989-023-8 | MR 1013466 | Zbl 0696.26004
[41] Saks, S.: Theory of the Integral. With two Additional Notes by Stefan Banach. Dover Publications, Mineola (1964). MR 0167578 | Zbl 1196.28001
Partner of
EuDML logo