[3] Bhrawy, A. H., Alhamed, Y., Baleanu, D., Al-Zahrani, A.:
New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17 (2014), 1138-1157.
DOI 10.2478/s13540-014-0218-9 |
MR 3254684 |
Zbl 1312.65166
[6] Chen, Y., Sun, Y., Liu, L.:
Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl. Math. Comput. 244 (2014), 847-858.
DOI 10.1016/j.amc.2014.07.050 |
MR 3250624 |
Zbl 1336.65173
[8] Dehestani, H., Ordokhani, Y., Razzaghi, M.:
Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336 (2018), 433-453.
DOI 10.1016/j.amc.2018.05.017 |
MR 3812592 |
Zbl 07130448
[9] Dehestani, H., Ordokhani, Y., Razzaghi, M.:
On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. Numer. Linear Algebra Appl. 26 (2019), Article ID e2259, 29 pages.
DOI 10.1002/nla.2259 |
MR 4011892
[10] Dehestani, H., Ordokhani, Y., Razzaghi, M.:
Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. (to appear) in Math. Methods Appl. Sci., 18 pages.
DOI 10.1002/mma.5840
[15] He, J.: Nonlinear oscillation with fractional derivative and its applications. Proceedings of the International Conference on Vibrating Engineering, Dalian, 1998, pp. 288-291.
[16] Iqbal, M. A., Saeed, U., Mohyud-Din, S. T.:
Modified Laguerre wavelets method for delay differential equations of fractional-order. Egyptian J. Basic Appl. Sci. 2 (2015), 50-54.
DOI 10.1016/j.ejbas.2014.10.004
[17] Jafari, H., Yousefi, S. A., Firoozjaee, M. A., Momani, S., Khalique, C. M.:
Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62 (2011), 1038-1045.
DOI 10.1016/j.camwa.2011.04.024 |
MR 2824691 |
Zbl 1228.65253
[18] Kazem, S.:
Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16 (2013), 3-11.
MR 3100782 |
Zbl 1394.34015
[20] Kreyszig, E.:
Introductory Functional Analysis with Applications. John Wiley & Sons, New York (1978).
MR 0467220 |
Zbl 0368.46014
[25] Mainardi, F.:
Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378, Springer, Vienna (1997), 291-348.
DOI 10.1007/978-3-7091-2664-6_7 |
MR 1611587 |
Zbl 0917.73004
[27] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993).
MR 1219954 |
Zbl 0789.26002
[33] Parand, K., Nikarya, M., Rad, J. A.:
Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method. Celest. Mech. Dyn. Astron. 116 (2013), 97-107.
DOI 10.1007/s10569-013-9477-8 |
MR 3061372
[34] Petráš, I.: Fractional-order feedback control of a DC motor. J. Electr. Eng. 60 (2009), 117-128.
[35] Podlubny, I.:
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego (1999).
MR 1658022 |
Zbl 0924.34008
[36] Rahimkhani, P., Ordokhani, Y., Babolian, E.:
Fractional-order Bernoulli wavelets and their applications. Appl. Math. Modelling 40 (2016), 8087-8107.
DOI 10.1016/j.apm.2016.04.026 |
MR 3529681
[37] Rahimkhani, P., Ordokhani, Y., Babolian, E.:
Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309 (2017), 493-510.
DOI 10.1016/j.cam.2016.06.005 |
MR 3539800 |
Zbl 06626265
[38] Rivlin, T. J.:
An Introduction to the Approximation of Functions. Dover Books on Advanced Mathematics, Dover Publications, New York (1981).
MR 0634509 |
Zbl 0489.41001
[40] Saeedi, H., Moghadam, M. M., Mollahasani, N., Chuev, G. N.:
A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1154-1163.
DOI 10.1016/j.cnsns.2010.05.036 |
MR 2736623 |
Zbl 1221.65354
[43] Yin, F., Song, J., Wu, Y., Zhang, L.:
Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstr. Appl. Anal. 2013 (2013), Article ID 562140, 13 pages.
DOI 10.1155/2013/562140 |
MR 3129359 |
Zbl 1291.65310
[44] Yuanlu, L., Weiwei, Z.:
Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 216 (2010), 2276-2285.
DOI 10.1016/j.amc.2010.03.063 |
MR 2647099 |
Zbl 1193.65114
[45] Yüzbaşi, Ş.: Bessel Polynomial Solutions of Linear Differential, Integral and Integro-Differential Equations. M.Sc. Thesis, Graduate School of Natural and Applied Sciences, Mugla University, Kötekli (2009).