Previous |  Up |  Next

Article

Keywords:
breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group
Summary:
We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.
References:
[1] Breaz, S., Călugăreanu, G.: Abelian groups whose subgroup lattice is the union of two intervals. J. Aust. Math. Soc. 78 (2005), 27-36. DOI 10.1017/s1446788700015548 | MR 2129487 | Zbl 1080.20023
[2] Călugăreanu, G., Deaconescu, M.: Breaking points in subgroup lattices. Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. DOI 10.1017/CBO9780511542770.012 | MR 2051518 | Zbl 1062.20028
[3] Chen, Y., Chen, G.: A note on a characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. DOI 10.1016/j.crma.2014.04.009 | MR 3210124 | Zbl 1303.20019
[4] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). DOI 10.1090/gsm/092 | MR 2426855 | Zbl 1169.20001
[5] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). DOI 10.1515/9783110868647 | MR 1292462 | Zbl 0843.20003
[6] Suzuki, M.: On the lattice of subgroups of finite groups. Trans. Am. Math. Soc. 70 (1951), 345-371. DOI 10.1090/S0002-9947-1951-0039717-3 | MR 0039717 | Zbl 0043.02502
[7] Suzuki, M.: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). DOI 10.1007/978-3-642-61804-8 | MR 0648772 | Zbl 0472.20001
[8] Suzuki, M.: Group Theory II. Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). DOI 10.1007/978-3-642-86885-6_3 | MR 0501682 | Zbl 0472.20001
[9] Tărnăuceanu, M.: A characterization of generalized quaternion 2-groups. C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. DOI 10.1016/j.crma.2010.06.016 | MR 2671150 | Zbl 1205.20024
[10] Tărnăuceanu, M.: Contributions to the Study of Subgroup Lattices. Matrix Rom, Bucharest (2016). MR 3496569 | Zbl 1360.20002
Partner of
EuDML logo