Previous |  Up |  Next

Article

Keywords:
variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector
Summary:
We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems.
References:
[1] Balmuş, A., Montaldo, S., Oniciuc, C.: Classification results for biharmonic submanifolds in spheres. Isr. J. Math. 168 (2008), 201-220. DOI 10.1007/s11856-008-1064-4 | MR 2448058 | Zbl 1172.58004
[2] Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. These de Doctorat, Université Joseph-Fourier, Grenoble French (2003).
[3] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb S^{3}$. Int. J. Math. 12 (2001), 867-876. DOI 10.1142/S0129167X01001027 | MR 1863283 | Zbl 1111.53302
[4] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Isr. J. Math. 130 (2002), 109-123. DOI 10.1007/BF02764073 | MR 1919374 | Zbl 1038.58011
[5] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17 (1991), 169-188. MR 1143504 | Zbl 0749.53037
[6] Chen, B.-Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu J. Math. 52 (1998), 167-185. DOI 10.2206/kyushujm.52.167 | MR 1609044 | Zbl 0892.53012
[7] Cheng, X., Mejia, T., Zhou, D.: Eigenvalue estimate and compactness for closed $f$-minimal surfaces. Pac. J. Math. 271 (2014), 347-367. DOI 10.2140/pjm.2014.271.347 | MR 3267533 | Zbl 1322.58020
[8] Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete $f$-minimal surfaces. Trans. Am. Math. Soc. 367 (2015), 4041-4059. DOI 10.1090/S0002-9947-2015-06207-2 | MR 3324919 | Zbl 1318.53061
[9] Dimitrić, I.: Submanifolds of $E^{m}$ with harmonic mean curvature vector. Bull. Inst. Math., Acad. Sin. 20 (1992), 53-65. MR 1166218 | Zbl 0778.53046
[10] J. Eells, Jr., J. H. Sampson: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109-160. DOI 10.2307/2373037 | MR 0164306 | Zbl 0122.40102
[11] Fetcu, D., Oniciuc, C., Rosenberg, H.: Biharmonic submanifolds with parallel mean curvature in $\mathbb S^{n}\times \mathbb R$. J. Geom. Anal. 23 (2013), 2158-2176. DOI 10.1007/s12220-012-9323-3 | MR 3107694 | Zbl 1281.58008
[12] Hasanis, T., Vlachos, T.: Hypersurfaces in $E^{4}$ with harmonic mean curvature vector field. Math. Nachr. 172 (1995), 145-169. DOI 10.1002/mana.19951720112 | MR 1330627 | Zbl 0839.53007
[13] Jiang, G.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math., Ser. A 7 (1986), 389-402 Chinese. DOI 10.1285/i15900932v28n1supplp209 | MR 0886529 | Zbl 0628.58008
[14] Jiang, G.: Some nonexistence theorems on 2-harmonic and isometric immersions in Euclidean space. Chin. Ann. Math., Ser. A 8 (1987), 377-383 Chinese. MR 0924896 | Zbl 0637.53071
[15] Li, X. X., Li, J. T.: The rigidity and stability of complete $f$-minimal hypersurfaces in $\mathbb{R}\times\mathbb{S}^{1}(a)$. (to appear) in Proc. Am. Math. Soc. MR 3600797
[16] Liu, G.: Stable weighted minimal surfaces in manifolds with non-negative Bakry-Emery Ricci tensor. Commun. Anal. Geom. 21 (2013), 1061-1079. DOI 10.4310/CAG.2013.v21.n5.a7 | MR 3152972 | Zbl 1301.53057
[17] Lu, W. J.: On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds. Sci. China, Math. 58 (2015), 1483-1498. DOI 10.1007/s11425-015-4997-1 | MR 3353985 | Zbl 1334.53063
[18] Ou, Y.-L., Wang, Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries. J. Geom. Phys. 61 (2011), 1845-1853. DOI 10.1016/j.geomphys.2011.04.008 | MR 2822453 | Zbl 1227.58004
[19] Ouakkas, S., Nasri, R., Djaa, M.: On the $f$-harmonic and $f$-biharmonic maps. JP J. Geom. Topol. 10 (2010), 11-27. MR 2677559 | Zbl 1209.58014
Partner of
EuDML logo