Previous |  Up |  Next

Article

Keywords:
PMSM; integral terminal sliding mode control; finite-time control; feedback linearization; disturbance observer
Summary:
This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.
References:
[1] Bhat, S. P., Bernstein, D. S.: Finite-time stability of homogeneous systems. In: Proc. American Control Conference, Albuquerque 1997, pp. 2513-2516. DOI 10.1109/acc.1997.609245
[2] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (1998), 751-766. DOI 10.1137/s0363012997321358 | MR 1756893 | Zbl 0945.34039
[3] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 678-682. DOI 10.1109/9.668834 | MR 1618028 | Zbl 0925.93821
[4] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite time stability. Math. Control Signals System 17 (2005), 101-127. DOI 10.1007/s00498-005-0151-x | MR 2150956
[5] Chen, W. H.: Disturbance observer based control for nonlinear systems. IEEE ASME Trans. Mechatron. 9(2004), 4, 706-710. DOI 10.1109/tmech.2004.839034
[6] Chern, T. L., Wu, Y. C.: An optimal variable structure control with integral compensation for electrohydraulic position servo control systems. IEEE Trans. Ind. Electron. 39 (1992), 5, 460-463. DOI 10.1109/41.161478
[7] Feng, Y., Zheng, J. F., Yu, X. H., Vu, Nguyen: High-order terminal sliding-mode observer design method for a permanent-magnet. synchronous motor control system. IEEE Trans. Ind. Electron. 56 (2009), 9, 3424-3431. DOI 10.1109/tie.2009.2025290
[8] Guo, L., Chen, W. H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15 (2005), 3, 109-125. DOI 10.1002/rnc.978 | MR 2117031 | Zbl 1078.93030
[9] Haimo, V. T.: Finite-time controllers. SIAM J. Control Optim. 24 (1986), 760-770. DOI 10.1137/0324047 | MR 0846381
[10] Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. DOI 10.1109/tie.2008.2011621
[11] Hsien, T. L., Sun, Y. Y., Tai, M. C.: H1 control for a sensorless permanent-magnet Synchronous drive. IEE Proc. Electr. Power. Appl. 144 (1997), 3, 173-181. DOI 10.1049/ip-epa:19970988
[12] Khail, H. K.: Nonlinear Systems PID predictive controller. Third Edition. Upper Saddle River, Prentice-Hall, NJ 1996.
[13] Kim, H., Son, J., Lee, J.: A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans. Ind. Electron. 58 (2011), 9, 4069-4077. DOI 10.1109/tie.2010.2098357
[14] Kung, Y. S., Tsai, M. H.: FPGA-based speed control IC for PMSM drive with adaptive fuzzy control. IEEE Trans. Power. Electron. 22 (2007), 6, 2476-2486. DOI 10.1109/tpel.2007.909185
[15] Lai, C. K., Shyu, K. K.: A novel motor drive Design for incremental motion system via sliding-mode control method. IEEE Trans. Ind. Electron. 52 (2005), 2, 499-507. DOI 10.1109/tie.2005.844230
[16] Leu, V. Q., Han, J. C., Jung, J. W.: Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer. IEEE Trans. Pow. Electron. 27 (2012), 3, 1530-1539. DOI 10.1109/tpel.2011.2161488
[17] Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34 (1998), 3, 379-384. DOI 10.1016/s0005-1098(97)00209-4 | MR 1623077 | Zbl 0915.93013
[18] Li, J., Li, S. H., Chen, X. S.: Adaptive speed control of PMSM servo system using a RBFN disturbance observer. Trans. Inst. Meas. Control 34 (2012), 5, 615-626. DOI 10.1177/0142331211410920
[19] Li, S. H., Liu, Z. G.: A daptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans. Ind. Electron. 56 (2009), 8, 3050-3059. DOI 10.1109/tie.2009.2024655
[20] Li, S. H., Liu, H. X., Ding, S. H.: A speed control for a PMSM using finite-time feedback control and disturbance compensation. Trans. Inst. Meas. Control. 32 (2010), 2, 170-187. DOI 10.1177/0142331209339860
[21] Li, S. H., Tian, Y. P.: Finite-time stability of cascaded time-varying systems. Int. J. Control 80 (2007), 4, 646-657. DOI 10.1080/00207170601148291 | MR 2304124 | Zbl 1117.93004
[22] Li, S. H., Zong, K., Liu, H. X.: A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans. Inst. Meas. Control. 33 (2011), 5, 522-541. DOI 10.1177/0142331210371814
[23] Li, S. H., Zhou, M. M., Yu, X. H.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 9 (2013), 4, 1879-1891. DOI 10.1109/tii.2012.2226896
[24] Luo, Y., Chen, Y. Q., Ahnc, H. S., Pi, Y.: Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments. Control. Eng. Practice. 18 (2010), 9, 1022-1036. DOI 10.1016/j.conengprac.2010.05.005 | MR 2642618
[25] She, J. H., Fang, M. Y., Ohyama, H., Hashimoto, H., Wu, M.: Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. Ind. Electron. 55 (2008), 1, 380-389. DOI 10.1109/tie.2007.905976
[26] Tang, R. Y.: Modern permanent magnet synchronous motor theory and design. Machinery Industry Press, Beijing 1997.
[27] Umeno, T., Hori, Y.: Robust speed control of DC servo motors using modern two degrees-of-freedom controller design. IEEE Trans. Ind. Electron. 38 (1991), 5, 363-368. DOI 10.1109/41.97556
[28] Vilath, G., Rahman, M., Tseng, K., Uddin, M.: Nonlinear control of interior permanent magnet synchronous motor. IEEE Trans. Indust. Appl. 39 (2003), 2, 408-415. DOI 10.1109/tia.2003.808932
[29] Wang, G. J., Fong, C. T., Chang, K. J.: Neural-network-based self-tuning PI controller for precise motion control of PMAC motors. IEEE Trans. Ind. Electron. 48 (2001), 2, 408-415. DOI 10.1109/41.915420
[30] Wang, J., Wang, F., Wang, G., al., et: Generalized proportional integral observer-based robust finite control set predictive current control for induction motor systems with time-varying disturbances. IEEE Trans. Ind. Informa. 14 (2018), 9, 4159-4168. DOI 10.1109/tii.2018.2818153
[31] Wang, J., Wang, F., Zhang, Z., al., et: Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems. IEEE Trans. Ind. Inforn. 13 (2017), 5, 2645-2656. DOI 10.1109/tii.2017.2679283
[32] Yang, J., Li, S. H., Yu, X. H.: Sliding mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60 (2013), 1, 160-169. DOI 10.1109/tie.2012.2183841
[33] Yang, J., Wu, H., Hu, L., al., et: Robust predictive speed regulation of converter-driven DC Motors via a discrete-time reduced-order GPIO. IEEE Trans. Ind. Electron, online (2018).
[34] Zarchi, H. A., Markadeh, G. R. A., Soltani, J.: Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization. Energy. Convers. Manag. 51 (2010), 1, 71-80. DOI 10.1016/j.enconman.2009.08.031
[35] Zhou, J., Wang, Y.: Adaptive backstepping speed controller design for a Permanent magnet synchronous motor. IEE Proc. Electr. Power. Appl. 149 (2002), 2, 165-72. DOI 10.1049/ip-epa:20020187
[36] Zong, Q., Zhao, Z. S., Zhang, J.: Higher order sliding mode control with self-tuning law based on integral sliding mode. IET Contr. Theory. Appl. 4 (2010), 7, 1282-1289. DOI 10.1049/iet-cta.2008.0610 | MR 2768249
Partner of
EuDML logo