Article
Keywords:
lexicographic product; GO-space; LOTS; countably compact product
Summary:
We characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization about lexicographic products, we see: \begin{itemize} \item[$\circ$] the lexicographic product $X^2$ of a countably compact GO-space $X$ need not be countably compact, \item[$\circ$] $\omega_1^2$, $\omega_1\times \omega$, $(\omega+1)\times (\omega_1+1)\times\omega_1\times \omega$, $\omega_1\times \omega\times \omega_1$, $\omega_1\times \omega\times\omega_1\times \omega\times \cdots $, $\omega_1\times \omega^\omega$, $\omega_1\times \omega^\omega\times (\omega+1)$, $\omega_1^\omega$, $\omega_1^\omega\times (\omega_1+1)$ and $\prod_{n\in \omega}\omega_{n+1}$ are countably compact, \item[$\circ$] $\omega\times \omega_1$, $(\omega+1)\times (\omega_1+1)\times\omega\times \omega_1$, $\omega\times \omega_1\times\omega\times \omega_1\times \cdots $, $\omega\times \omega_1^\omega$, $\omega_1\times \omega^\omega\times \omega_1$, $\omega_1^\omega\times \omega$, $\prod_{n\in \omega}\omega_{n}$ and $\prod_{n\leq \omega}\omega_{n+1}$ are not countably compact, \item[$\circ$] $[0,1)_\mathbb R\times \omega_1$, where $[0,1)_\mathbb R$ denotes the half open interval in the real line $\mathbb R$, is not countably compact, \item[$\circ$] $\omega_1\times [0,1)_\mathbb R$ is countably compact, \item[$\circ$] both $\mathbb S\times \omega_1$ and $\omega_1\times \mathbb S$ are not countably compact, \item[$\circ$] $\omega_1\times (-\omega_1)$ is not countably compact, where for a GO-space $X=\langle X,<_X,\tau_X\rangle$, $-X$ denotes the GO-space $\langle X,>_X,\tau_X\rangle$. \end{itemize}
References:
[1] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, 6, Herdermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[2] Faber M. J.:
Metrizability in Generalized Ordered Spaces. Mathematical Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974.
MR 0418053 |
Zbl 0282.54017
[3] Kemoto N.:
Normality of products of GO-spaces and cardinals. Topology Proc. 18 (1993), 133–142.
MR 1305127
[8] Kemoto N.:
The structure of the linearly ordered compactifications of GO-spaces. Topology Proc. 52 (2018), 189–204.
MR 3734101
[9] Kunen K.:
Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980.
MR 0597342 |
Zbl 0534.03026
[10] Lutzer D. J.:
On generalized ordered spaces. Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages.
MR 0324668