[3] Andersen, L., Andreasen, J.:
Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (2000), 231-262.
DOI 10.1023/A:1011354913068 |
Zbl 1274.91398
[4] Bensoussan, A., Lions, J.-L.:
Impulse Control and Quasi-Variational Inequalities. \hbox{Gauthier}-Villars, Paris (1984).
MR 0756234
[16] Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2006).
[18] Hozman, J.:
Analysis of the discontinuous Galerkin method applied to the European option pricing problem. AIP Conf. Proc. 1570 (2013), 227-234.
DOI 10.1063/1.4854760
[23] Itkin, A.:
Pricing Derivatives Under Lévy Models. Modern Finite-Difference and Pseudo-Differential Operators Approach. Pseudo-Differential Operators. Theory and Applications 12, Birkhäuser/Springer, Basel (2017).
DOI 10.1007/978-1-4939-6792-6 |
MR 3618292 |
Zbl 06658825
[25] Kufner, A., John, O., Fučík, S.:
Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Praha (1977).
MR 0482102 |
Zbl 0364.46022
[32] Reed, W. H., Hill, T. R.:
Triangular Mesh Methods for the Neutron Transport Equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, New Mexico (1973), Available at
https://www.osti.gov/servlets/purl/4491151
[33] Rivière, B.:
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics 35, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008).
DOI 10.1137/1.9780898717440 |
MR 2431403 |
Zbl 1153.65112
[34] Roos, H.-G., Stynes, M., Tobiska, L.:
Numerical Methods for Singularly Perturbed Differential Equations. Convection-diffusion and Flow Problems. Springer Series in Computational Mathematics 24, Springer, Berlin (1996).
DOI 10.1007/978-3-662-03206-0 |
MR 1477665 |
Zbl 0844.65075
[36] Vlasák, M., Dolejší, V., Hájek, J.:
A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482.
DOI 10.1002/num.20591 |
MR 2838303 |
Zbl 1237.65105
[37] Wilmott, P., Dewynne, J., Howison, S.:
Option Pricing: Mathematical Models and Computation. Financial Press, Oxford (1995).
Zbl 0844.90011
[38] Zhang, K., Wang, S.:
A computational scheme for options under jump diffusion processes. Int. J. Numer. Anal. Model. 6 (2009), 110-123.
MR 2574899 |
Zbl 1159.91402