[2] Argyros I. K.:
Computational Theory of Iterative Methods. Studies in Computational Mathematics, 15, Elsevier, Amsterdam, 2007.
MR 2356038 |
Zbl 1147.65313
[3] Argyros I. K., Cho Y. J., George S.:
Local convergence for some third-order iterative methods under weak conditions. J. Korean Math. Soc. 53 (2016), no. 4, 781–793.
DOI 10.4134/JKMS.j150244 |
MR 3521238
[4] Argyros I. K., George S.:
Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions. Calcolo 53 (2016), no. 4, 585–595.
DOI 10.1007/s10092-015-0163-y |
MR 3574604
[5] Argyros I. K., Magreñán Á. A.:
Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems. Appl. Math. Comput. 241 (2014), 401–408.
MR 3223438
[6] Argyros I. K., Szidarovszky F.:
The Theory and Applications of Iteration Methods. Systems Engineering Series, CRC Press, Boca Raton, 1993.
MR 1272012
[8] Cordero A., Torregrosa J. R.:
Variants of Newton's method for functions of several variables. Appl. Math. Comput. 183 (2006), no. 1, 199–208.
MR 2282802
[9] Cordero A., Torregrosa J. R.:
Variants of Newton's method using fifth-order quadrature formulas. Appl. Math. Comput. 190 (2007), no. 1, 686–698.
MR 2338747
[10] Ezquerro J. A., Hernández M. A., Romero A. N.: Approximacion de soluciones de algunas equacuaciones integrals de Hammerstein mediante metodos iterativos tipo. Newton, XXI Congresode ecuaciones diferenciales y aplicaciones Universidad de Castilla-La Mancha, Ciudad Real, 2009, 8 pages.
[11] Grau-Sánchez M., Grau À., Noguera M.:
On the computational efficiency index and some iterative methods for solving systems of non-linear equations. J. Comput. Appl. Math. 236 (2011), no. 6, 1259–1266.
DOI 10.1016/j.cam.2011.08.008 |
MR 2854048
[17] Ren H., Argyros I. K.:
Improved local analysis for a certain class of iterative methods with cubic convergence. Numer. Algorithms 59 (2012), no. 4, 505–521.
DOI 10.1007/s11075-011-9501-6 |
MR 2892562
[18] Rheinboldt W. C.:
An adaptive continuation process for solving systems of nonlinear equations. Mathematical models and numerical methods, Banach Center Publ., 3, PWN, Warszawa, 1978, pages 129–142.
MR 0514377 |
Zbl 0378.65029
[19] Shah F. A., Noor M. A.:
Some numerical methods for solving nonlinear equations by using decomposition technique. Appl. Math. Comput. 251 (2015), 378–386.
MR 3294725
[21] Traub J. F.:
Iterative Methods for the Solution of Equations. AMS Chelsea Publishing, New York, 1982.
Zbl 0672.65025