Previous |  Up |  Next

Article

Keywords:
Leibniz algebra; Lie algebra; center; central serie; hypercenter; nilpotent residual
Summary:
This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra $L$ includes a finite dimensional ideal $K$ such that the factor-algebra $L/K$ is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.
References:
[1] Baer R.: Endlichkeitskriterien für Kommutatorgruppen. Math. Ann. 124 (1952), 161–177 (German). DOI 10.1007/BF01343558 | MR 0045720
[2] Ballester-Bolinches A., Camp-Mora S., Kurdachenko L. A., Otal J.: Extension of a Schur theorem to groups with a central factor with a bounded section rank. J. Algebra 393 (2013), 1–15. DOI 10.1016/j.jalgebra.2013.06.035 | MR 3090052 | Zbl 1294.20045
[3] Chupordia V. A., Kurdachenko L. A., Subbotin I. Ya.: On some “minimal" Leibniz algebras. J. Algebra Appl. 16 (2017), no. 5, 1750082, 16 pages. DOI 10.1142/S0219498817500827 | MR 3634087
[4] Dixon M. R., Kurdachenko L. A., Otal J.: On groups whose factor-group modulo the hypercentre has finite section $p$-rank. J. Algebra 440 (2015), 489–503. DOI 10.1016/j.jalgebra.2015.06.005 | MR 3373402
[5] Dixon M. R., Kurdachenko L. A., Otal J.: On the structure of some infinite dimensional linear groups. Comm. Algebra 45 (2017), no. 1, 234–246. DOI 10.1080/00927872.2016.1175593 | MR 3556568
[6] de Falco M., de Giovanni F., Musella C., Sysak Y. P.: On the upper central series of infinite groups. Proc. Amer. Math. Soc. 139 (2011), no. 2, 385–389. DOI 10.1090/S0002-9939-2010-10625-1 | MR 2736322
[7] Franciosi S., de Giovanni F., Kurdachenko L. A.: The Schur property and groups with uniform conjugacy classes. J. Algebra 174 (1995), no. 3, 823–847. DOI 10.1006/jabr.1995.1155 | MR 1337173
[8] Kurdachenko L. A., Otal J., Pypka A. A.: Relationships between factors of canonical central series of Leibniz algebras. Eur. J. Math. 2 (2016), no. 2, 565–577. DOI 10.1007/s40879-016-0093-5 | MR 3499000
[9] Kurdachenko L. A., Otal J., Subbotin I. Ya.: On a generalization of Baer theorem. Proc. Amer. Math. Soc. 141 (2013), no. 8, 2597–2602. MR 3056549
[10] Kurdachenko L. A., Pypka A. A., Subbotin I. Ya.: On some relations between the factors of the upper and lower central series in Lie algebras. Serdica Math. J. 41 (2015), no. 2–3, 293–306. MR 3363607
[11] Kurdachenko L. A., Shumyatsky P.: The ranks of central factor and commutator groups. Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 63–69. DOI 10.1017/S0305004112000412 | MR 3002583
[12] Kurdachenko L. A., Subbotin I. Ya.: On the relationships between the factors of upper and lower central series in groups and other algebraic structures. Note Mat. 36 (2016), suppl. 1, 35–50. MR 3601080
[13] Neumann B. H.: Groups with finite classes of conjugate elements. Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 0043779 | Zbl 0043.02401
Partner of
EuDML logo