[2] Alaghmandan M., Nasr-Isfahani R., Nemati M.:
On $\phi$-contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), no. 4, 373–379.
DOI 10.1007/s00013-010-0177-2 |
MR 2727314
[3] Choi Y., Ghahramani F., Zhang Y.:
Approximate and pseudo-amenability of various classes of Banach algebras. J. Funct. Anal. 256 (2009), no. 10, 3158–3191.
DOI 10.1016/j.jfa.2009.02.012 |
MR 2504522
[4] Dashti M., Nasr-Isfahani R., Soltani Renani S.:
Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (2014), no. 1, 37–41.
DOI 10.4153/CMB-2012-015-3 |
MR 3150714
[5] Dales H. G., Lau A. T.-M., Strauss D.:
Banach algebras on semigroups and on their compactifications. Mem. Amer. Math. Soc. 205 (2010), no. 966, 165 pages.
MR 2650729
[14] Jabbari A., Abad T. M., Abadi M. Z.:
On $\phi$-inner amenable Banach algebras. Colloq. Math. 122 (2011), no. 1, 1–10.
DOI 10.4064/cm122-1-1 |
MR 2755887
[16] Nasr-Isfahani R., Soltani Renani S.:
Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math. 202 (2011), no. 3, 205–225.
DOI 10.4064/sm202-3-1 |
MR 2771651
[17] Runde V.:
Lectures on Amenability. Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002.
MR 1874893
[19] Sahami A.:
On biflatness and $\phi$-biflatness of some Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 111–122.
MR 3785185
[20] Sahami A., Pourabbas A.:
On $\phi$-biflat and $\phi$-biprojective Banach algebras. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 789–801.
DOI 10.36045/bbms/1385390764 |
MR 3160589