[1] Ansari, A. H., Shukla, S.:
Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces. J. Adv. Math. Stud. 9 (2016), 37-53.
MR 3495331 |
Zbl 1353.54030
[2] Berinde, M.:
Approximate fixed point theorems. Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25.
MR 2246435 |
Zbl 1164.54028
[4] Chandok, S., Ansari, A. H.:
Some results on generalized nonlinear contractive mappings. Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages.
DOI 10.23952/cot.2017.27
[6] Dey, D., Saha, M.:
Approximate fixed point of Reich operator. Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123.
MR 3028154 |
Zbl 1324.54067
[7] Hussain, N., Kutbi, M. A., Salimi, P.:
Fixed point theory in $\alpha$-complete metric spaces with applications. Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages.
DOI 10.1155/2014/280817 |
MR 3166589
[8] Istrăţescu, V. I.:
Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104.
DOI 10.1007/BF01761490 |
MR 0663966 |
Zbl 0477.54033
[9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.:
Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space. J. Nonlinear Sci. Appl. 10 (2017), 1695-1708.
DOI 10.22436/jnsa.010.04.32 |
MR 3639736
[11] Latif, A., Sintunavarat, W., Ninsri, A.:
Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces. Taiwanese J. Math. 19 (2015), 315-333.
DOI 10.11650/tjm.19.2015.4746 |
MR 3313418 |
Zbl 1357.54034
[15] Tijs, S., Torre, A., Brânzei, R.:
Approximate fixed point theorems. Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill.
MR 2002283 |
Zbl 1056.47046