Previous |  Up |  Next

Article

Keywords:
logic of bounded lattice; polarity; two-sorted frame; relational semantics
Summary:
This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
References:
[1] Allwein, G., Dunn, J. M.: Kripke models for linear logic. J. Symb. Log. 58 (1993), 514-545. DOI 10.2307/2275217 | MR 1233922 | Zbl 0795.03013
[2] Bimbó, K., Dunn, J. M.: Four-valued logic. Notre Dame J. Formal Logic 42 (2001), 171-192. DOI 10.1305/ndjfl/1063372199 | MR 2010180 | Zbl 1034.03021
[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002). DOI 10.1017/CBO9780511809088 | MR 1902334 | Zbl 1002.06001
[4] Dunn, J. M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symb. Log. 70 (2005), 713-740. DOI 10.2178/jsl/1122038911 | MR 2155263 | Zbl 1101.03021
[5] Font, J. M.: Abstract Agebraic Logic. An Introductory Textbook. Studies in Logic 60. Mathematical Logic and Foundations. College Publications, London (2016). MR 3558731 | Zbl 1375.03001
[6] Font, J. M., Jansana, R.: A General Algebraic Semantics For Sentential Logics. Lecture Notes in Logic 7. Springer, Berlin (1996). DOI 10.1017/9781316716915 | MR 1421569 | Zbl 0865.03054
[7] Font, J. M., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Stud. Log. 74 (2003), 13-97. DOI 10.1023/A:1024621922509 | MR 1996593 | Zbl 1057.03058
[8] Gehrke, M.: Generalized Kripke frames. Stud. Log. 84 (2006), 241-275. DOI 10.1007/s11225-006-9008-7 | MR 2284541 | Zbl 1115.03013
[9] Gehrke, M., Jansana, R., Palmigiano, A.: $\Delta_1$-completions of a poset. Order 30 (2013), 39-64. DOI 10.1007/s11083-011-9226-0 | MR 3018209 | Zbl 1317.06002
[10] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Jap. 40 (1994), 207-215. MR 1297234 | Zbl 0855.06009
[11] Gehrke, M., Jónsson, B.: Monotone bounded distributive lattice expansions. Math. Jap. 52 (2000), 197-213. MR 1793267 | Zbl 0972.06005
[12] Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Math. Scand. 94 (2004), 13-45. DOI 10.7146/math.scand.a-14428 | MR 2032334 | Zbl 1077.06008
[13] Hartung, G.: A topological representation of lattices. Algebra Univers. 29 (1992), 273-299. DOI 10.1007/BF01190610 | MR 1157437 | Zbl 0790.06005
[14] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). MR 0698074 | Zbl 0499.54001
[15] Jónsson, B., Tarski, A.: Boolean algebras with operators I. Am. J. Math. 73 (1951), 891-939. DOI 10.2307/2372123 | MR 0044502 | Zbl 0045.31505
[16] Jónsson, B., Tarski, A.: Boolean algebras with operators II. Am. J. Math. 74 (1952), 127-162. DOI 10.2307/2372074 | MR 0045086 | Zbl 0045.31601
[17] Kamide, N.: Kripke semantics for modal substructural logics. J. Logic Lang. Inf. 11 (2002), 453-470. DOI 10.1023/A:1019915908844 | MR 1926009 | Zbl 1017.03011
[18] MacCaull, W.: Relational semantics and a relational proof system for full Lambek calculus. J. Symb. Log. 63 (1998), 623-637. DOI 10.2307/2586855 | MR 1625899 | Zbl 0926.03024
[19] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions I: A topological construction of canonical extensions. Algebra Univers. 71 (2014), 109-126. DOI 10.1007/s00012-014-0267-2 | MR 3183386 | Zbl 1307.06002
[20] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions II: Lattice expansions with quasioperators. Algebra Univers. 71 (2014), 221-234. DOI 10.1007/s00012-014-0275-2 | MR 3192022 | Zbl 1307.06003
[21] Rebagliato, J., Verdú, V.: On the algebraization of some Gentzen systems. Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 18 (1993), 319-338. MR 1270344 | Zbl 0788.03006
[22] Rebagliato, J., Verdú, V.: Algebraizable Gentzen systems and the deduction theorem for Gentzen systems. Mathematics Preprint. Series 175 University of Barcelona (1995).
[23] Urquhart, A.: A topological representation theory for lattices. Algebra Univers. 8 (1978), 45-58. DOI 10.1007/BF02485369 | MR 0450150 | Zbl 0382.06010
Partner of
EuDML logo