Previous |  Up |  Next

Article

Keywords:
Finsler spaces; Generalized Berwalds spaces; Intrinsic Geometry
Summary:
In the paper we characterize the two-dimensional generalized Berwald manifolds in terms of the classical setting of Finsler surfaces (Berwald frame, main scalar etc.). As an application we prove that if a Landsberg surface is a generalized Berwald manifold then it must be a Berwald manifold. Especially, we reproduce Wagner's original result in honor of the 75th anniversary of publishing his pioneering work about generalized Berwald manifolds.
References:
[1] Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. Advanced Studies in Pure Mathematics, 48, 2007, 19-71, DOI 10.2969/aspm/04810019 | MR 2389251
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler geometry. 2000, Springer-Verlag, MR 1747675
[3] Berwald, L.: Über zweidimensionale allgemeine metrische Räume. Journal für die reine und angewandte Mathematik, 156, 1927, 191-222, MR 1581095
[4] Berwald, L.: On Finsler and Cartan geometries. III: two-dimensional Finsler spaces with rectilinear extremals. Annals of Mathematics, 1941, 84-112, DOI 10.2307/1968989 | MR 0003992
[5] Hashiguchi, M.: On conformal transformations of Finsler metrics. J. Math. Kyoto Univ., 16, 1976, 25-50, DOI 10.1215/kjm/1250522956 | MR 0402642
[6] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. 1986, Kaiseisha press, MR 0858830
[7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer Academic Publishers, MR 1967666 | Zbl 1009.53004
[8] Vattamány, Sz., Vincze, Cs.: Two-dimensional Landsberg manifolds with vanishing Douglas tensor. Annales Univ. Sci. Budapest, 44, 2001, 11-26, MR 1917696
[9] Vattamány, Sz., Vincze, Cs.: On a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar. Period. Math. Hungar., 48, 1--2, 2004, 61-67, DOI 10.1023/B:MAHU.0000038966.20644.e8 | MR 2077686
[10] Vincze, Cs.: A new proof of Szabó's theorem on the Riemann-metrizability of Berwald manifolds. Acta Math. Acad. Paedagog. Nyházi (NS), 21, 2, 2005, 199-204, MR 2162616
[11] Vincze, Cs.: On a scale function for testing the conformality of Finsler manifolds to a Berwald manifold. Journal of Geometry and Physics, 54, 4, 2005, 454-475, Elsevier, DOI 10.1016/j.geomphys.2004.11.004 | MR 2144712
[12] Vincze, Cs.: On Berwald and Wagner manifolds. Acta Math. Acad. Paedagog. Nyházi.(NS), 24, 2008, 169-178, MR 2430244
[13] Vincze, Cs.: On generalized Berwald manifolds with semi-symmetric compatible linear connections. Publ. Math. Debrecen, 83, 4, 2013, 741-755, DOI 10.5486/PMD.2014.5750 | MR 3150840
[14] Vincze, Cs.: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors. European Journal of Mathematics, 3, 4, 2017, 1098-1171, Springer, DOI 10.1007/s40879-017-0153-5 | MR 3736800
[15] Vincze, Cs.: Lazy orbits: an optimization problem on the sphere. Journal of Geometry and Physics, 124, 2018, 180-198, Elsevier, DOI 10.1016/j.geomphys.2017.10.018 | MR 3754505
[16] Vincze, Cs., Oláh, M., Alabdulsada, Layth M.: On the divergence representation of the Gauss curvature of Riemannian surfaces and its applications. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 1-13, Springer,
[17] Wagner, V.: On generalized Berwald spaces. CR (Doklady) Acad. Sci. URSS (NS), 39, 1943, 3-5, MR 0009147
Partner of
EuDML logo