[1] Berman, J., Köhler, P.:
Cardinalities of finite distributive lattices. Mitt. Math. Sem. Giessen, 121, 1976, 103-124,
MR 0485609
[2] Chipalkatti, J.V.: Notes on Grassmannians and Schubert varieties. Queen's Papers in Pure and Applied Mathematics, 13, 119, 2000,
[3] Derksen, H., Kemper, G.:
Computational invariant theory. 2015, Springer,
MR 3445218
[4] Ghorpade, S.R.:
Note on Hodge's postulation formula for Schubert varieties. Lecture Notes in Pure and Applied Mathematics, 217, 2001, 211-220, Marcel Dekker, New York,
MR 1824230
[5] Gross, B.H., Wallach, N.R.:
On the Hilbert polynomials and Hilbert series of homogeneous projective varieties. Arithmetic geometry and automorphic forms, 19, 2011, 253-263,
MR 2906911
[6] Hodge, W.V.D.:
A note on $k$-connexes. Mathematical Proceedings of the Cambridge Philosophical Society, 38, 2, 1942, 129-143, Cambridge University Press,
DOI 10.1017/S0305004100021824 |
MR 0006450
[7] Hodge, W.V.D:
Some enumerative results in the theory of forms. Mathematical Proceedings of the Cambridge Philosophical Society, 39, 1, 1943, 22-30, Cambridge University Press,
DOI 10.1017/S0305004100017631 |
MR 0007739
[8] Hodge, W.V.D., Pedoe, D.:
Methods of algebraic geometry, Volume 2. 1952, Cambridge University Press,
MR 0061846
[9] Lakshmibai, V., Brown, J.:
The Grassmannian Variety: Geometric and Representation-theoretic Aspects. 42, 2015, Springer,
MR 3408060
[10] Littlewood, D.E.:
On the number of terms in a simple algebraic form. Mathematical Proceedings of the Cambridge Philosophical Society, 38, 4, 1942, 394-396, Cambridge University Press,
DOI 10.1017/S0305004100022088 |
MR 0009937
[11] MacMahon, P.A.:
Combinatory analysis. 1916, Cambridge University Press,
MR 0141605
[13] Miller, A.R., Paris, R.B.:
Euler-type transformations for the generalized hypergeometric function ${}_{r+2}F_{r+1}(x)$. Zeitschrift für angewandte Mathematik und Physik, 62, 1, 2011, 31-45,
MR 2765774
[14] Miller, A.R., Paris, R.B.:
Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mountain Journal of Mathematics, 43, 1, 2013, 291-327,
DOI 10.1216/RMJ-2013-43-1-291 |
MR 3065467
[15] Mukai, S.:
An introduction to invariants and moduli. 2003, Cambridge University Press, Cambridge Studies in Advanced Mathematics 81.
MR 2004218
[17] Narayana, T.V.:
A partial order and its applications to probability theory. Sankhya: The Indian Journal of Statistics, 1959, 91-98,
MR 0106498
[18] Santos, F., Stump, C., Welker, V.:
Noncrossing sets and a Gra\IL2\ss mann associahedron. Forum of Mathematics, Sigma, 5, 2017, 49p, Cambridge University Press,
MR 3610869
[20] Sturmfels, B.:
Gröbner bases and convex polytopes. 1996, American Mathematical Society, University Lecture Series Vol. 8..
MR 1363949
[21] Sulanke, R.A.:
Generalizing Narayana and Schröder numbers to higher dimensions. The Electronic Journal of Combinatorics, 11, 1, 2004, 54p,
DOI 10.37236/1807 |
MR 2097320