[2] Agarwal, R. P., Benchohra, M., Hamani, S.:
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973-1033.
DOI 10.1007/s10440-008-9356-6 |
MR 2596185 |
Zbl 1198.26004
[3] Bagley, R. L., Torvik, P. J.:
A different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), 741-748.
DOI 10.2514/3.8142 |
Zbl 0514.73048
[4] Bagley, R. L., Torvik, P. J.:
A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210.
DOI 10.1122/1.549724 |
Zbl 0515.76012
[5] Bagley, R. L., Torvik, P. J.:
On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51 (1984), 294-298.
DOI 10.1115/1.3167615 |
Zbl 1203.74022
[7] Bhairat, S. P., Dhaigude, D. B.:
Existence and stability of fractional differential equations involving generalized Katugampola derivative. Available at
https://arxiv.org/ abs/1709.08838 (2017), 15 pages.
[8] Chitalkar-Dhaigude, C. D., Bhairat, S. P., Dhaigude, D. B.: Solution of fractional differential equations involving Hilfer fractional derivative: Method of successive approximations. Bull. Marathwada Math. Soc. 18 (2017), 1-13.
[10] Dhaigude, D. B., Bhairat, S. P.:
Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Commun. Appl. Anal. 22 (2017), 121-134.
MR 3820828
[11] Dhaigude, D. B., Bhairat, S. P.:
On existence and approximation of solution of nonlinear Hilfer fractional differential equations. (to appear) in Int. J. Pure Appl. Math. Available at
http://arxiv.org/abs/1704.02464 (2017), 9 pages.
MR 3820828
[12] Dhaigude, D. B., Bhairat, S. P.:
Local existence and uniqueness of solutions for Hilfer-Hadamard fractional differential problem. Nonlinear Dyn. Syst. Theory 18 (2018), 144-153.
MR 3820828
[13] Dhaigude, D. B., Bhairat, S. P.:
Ulam stability for system of nonlinear implicit fractional differential equations. Progress in Nonlinear Dynamics and Chaos 6 (2018), 29-38.
DOI 10.22457/pindac.v6n1a4
[15] Furati, K. M., Tatar, N.-E.:
An existence result for a nonlocal fractional differential problem. J. Fractional Calc. 26 (2004), 43-51.
MR 2096756 |
Zbl 1101.34001
[19] Kassim, M. D., Tatar, N.-E.:
Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2013 (2013), Article ID 605029, 12 pages.
DOI 10.1155/2013/605029 |
MR 3139483
[21] Katugampola, U. N.:
A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6 (2014), 1-15.
MR 3298307 |
Zbl 1317.26008
[22] Katugampola, U. N.:
Existence and uniqueness results for a class of generalized fractional differenital equations. Available at
https://arxiv.org/abs/1411.5229 (2016).
[26] Podlubny, I.:
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999).
MR 1658022 |
Zbl 0924.34008
[28] Wang, J., Zhang, Y.:
Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266 (2015), 850-859.
DOI 10.1016/j.amc.2015.05.144 |
MR 3377602