[1] Bernardi, O.:
Solution to a combinatorial puzzle arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 59 (2007), Article No. B59e, 10 pages.
MR 2465401 |
Zbl 1193.05012
[7] Kaouche, A., Labelle, G.:
Mayer and Ree-Hoover weights, graph invariants and bipartite complete graphs. P.U.M.A., Pure Math. Appl. 24 (2013), 19-29.
MR 3197094 |
Zbl 1313.05019
[10] Labelle, G., Leroux, P., Ducharme, M. G.:
Graph weights arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 54 (2005), Article No. B54m, 40 pages.
MR 2341745 |
Zbl 1188.82007
[13] Mayer, J. E., Mayer, M. Göppert:
Statistical Mechanics. J. Wiley and Sons, New York (1940),\99999JFM99999 66.1175.01.
MR 0674819
[15] Sidorenko, A. F.:
Inequalities for functionals generated by bipartite graphs. Discrete Math. Appl. 2 (1991), Article No. 489-504 English. Russian original translation from Diskretn. Mat. 3 1991 50-65.
DOI 10.1515/dma.1992.2.5.489 |
MR 1138091 |
Zbl 0787.05052