[3] Choe, B. R., Lee, Y. J.:
Note on atomic decompositions of harmonic Bergman functions. Complex Analysis and Its Applications, OCAMI Studies 2 Imayoshi Yoichi et al. Osaka Municipal Universities Press, Osaka (2007), 11-24.
MR 2405697 |
Zbl 1154.47019
[6] Coifman, R. R., Rochberg, R.:
Representation theorems for holomorphic and harmonic functions in $L^p$. Astérisque 77 (1980), 11-66.
MR 0604369 |
Zbl 0472.46040
[7] Djrbashian, A. E., Shamoian, F. A.:
Topics in the Theory of $A^p_\alpha$ Spaces. Teubner Texts in Mathematics, 105, B. G. Teubner, Leipzig (1988).
MR 1021691 |
Zbl 0667.30032
[18] Oleinik, V. L., Pavlov, B. S.:
Embedding theorems for weighted classes of harmonic and analytic functions. J. Soviet Math. 2 (1974), 135-142 English. Russian original translation from Zap. Nauch. Sem. LOMI Steklov 22 1971 94-102.
DOI 10.1007/BF01099672 |
MR 0318867 |
Zbl 0278.46032
[19] Ren, G.:
Harmonic Bergman spaces with small exponents in the unit ball. Collect. Math. 53 (2002), 83-98.
MR 1893309 |
Zbl 1029.46019
[22] Zygmund, A.:
Trigonometric Series. Vol. I, II. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2002).
MR 1963498 |
Zbl 1084.42003