[1] Aarnes, J. E., Gimse, T., Lie, K.-A.:
An introduction to the numerics of flow in porous media using Matlab. Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF Springer, Berlin (2007), 265-306.
DOI 10.1007/978-3-540-68783-2_9 |
MR 2348925 |
Zbl 1330.76004
[2] Aarnes, J. E., Krogstad, S., Lie, K.-A.:
A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5 (2006), 337-363.
DOI 10.1137/050634566 |
MR 2247754 |
Zbl 1124.76022
[5] Christie, M. A., Blunt, M. J.:
Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reservoir Eval. Eng. 4 (2001), 308-317.
DOI 10.2118/72469-pa
[7] Cros, J.-M.:
A preconditioner for the Schur complement domain decomposition method. 14th Int. Conf. on Domain Decomposition Methods in Science and Engineering I. Herrera et al. National Autonomous University of Mexico (UNAM), México (2003), 373-380.
MR 2093729 |
Zbl 1103.65004
[10] Dohrmann, C. R.: A substructuring preconditioner for nearly incompressible elasticity problems. Technical report SAND 2004-5393, Sandia National Laboratories (2004).
[11] Dohrmann, C. R., Widlund, O. B.:
Some recent tools and a BDDC algorithm for 3D problems in $H( curl)$. Domain Decomposition Methods in Science and Engineering XX Lecture Notes Computational Science and Engineering 91, Springer, Heidelberg (2013), 15-25.
DOI 10.1007/978-3-642-35275-1_2 |
MR 3242973 |
Zbl 06125818
[14] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.:
FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50 (2001), 1523-1544.
DOI 10.1002/nme.76 |
MR 1813746 |
Zbl 1008.74076
[16] Fragakis, Y., Papadrakakis, M.:
The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830.
DOI 10.1016/S0045-7825(03)00374-8 |
Zbl 1054.74069
[17] Glowinski, R., Wheeler, M. F.:
Domain decomposition and mixed finite element methods for elliptic problems. First International Symposium on Domain Decomposition Methods for Partial Differential Equations SIAM, Philadelphia (1988), 144-172.
MR 0972516 |
Zbl 0661.65105
[18] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (1996).
MR 1417720 |
Zbl 0865.65009
[19] Hanek, M., Šístek, J., Burda, P.:
The effect of irregular interfaces on the BDDC method for the Navier-Stokes equations. Proc. Int. Conf. Domain Decomposition Methods in Science and Engineering XXIII Lecture Notes Computational Science and Engineering 116, Springer, Cham (2017), 171-178.
DOI 10.1007/978-3-319-52389-7_16 |
MR 3718352 |
Zbl 06747817
[20] Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, Department of Computer Science, University of Minnesota (1998).
[22] Klawonn, A., Kühn, M., Rheinbach, O.:
A closer look at local eigenvalue solvers for adaptive FETI-DP and BDDC. Technical report, Universität zu Köln (2018). Available at
https://kups.ub.uni-koeln.de/9020/
[25] Christensen, M. la Cour, Villa, U., Engsig-Karup, A. P., Vassilevski, P. S.:
Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (AMGe) approach. SIAM J. Sci. Comput. 39 (2017), B102--B137.
DOI 10.1137/140988991 |
MR 3612903 |
Zbl 1360.65247
[26] Li, J., Tu, X.:
Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems. Numer. Linear Algebra Appl. 16 (2009), 745-773.
DOI 10.1002/nla.639 |
MR 2554500 |
Zbl 1224.65248
[32] Mathew, T. P.:
Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. I. Algorithms and numerical results. Numer. Math. 65 (1993), 445-468.
DOI 10.1007/BF01385762 |
MR 1231895 |
Zbl 0801.65106
[33] Oh, D.-S., Widlund, O. B., Zampini, S., Dohrmann, C. R.:
BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields. Math. Comput. 87 (2018), 659-692.
DOI 10.1090/mcom/3254 |
MR 3739213 |
Zbl 1380.65065
[35] Pechstein, C., Dohrmann, C. R.:
A unified framework for adaptive BDDC. ETNA, Electron. Trans. Numer. Anal. 46 (2017), 273-336.
MR 3678572 |
Zbl 1368.65043
[37] Šístek, J., Březina, J., Sousedík, B.:
BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions. Numer. Linear Algebra Appl. 22 (2015), 903-929.
DOI 10.1002/nla.1991 |
MR 3426321 |
Zbl 1389.76057
[40] Spillane, N., Rixen, D. J.:
Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95 (2013), 953-990.
DOI 10.1002/nme.4534 |
MR 3093793 |
Zbl 1352.65553
[42] Tu, X.:
A BDDC algorithm for a mixed formulation of flow in porous media. ETNA, Electron. Trans. Numer. Anal. 20 (2005), 164-179.
MR 2175341 |
Zbl 1160.76368
[43] Tu, X.:
A BDDC algorithm for flow in porous media with a hybrid finite element discretization. ETNA, Electron. Trans. Numer. Anal. 26 (2007), 146-160.
MR 2366094 |
Zbl 1170.76034
[48] Vecharynski, E., Saad, Y., Sosonkina, M.:
Graph partitioning using matrix values for preconditioning symmetric positive definite systems. SIAM J. Sci. Comput. 36 (2014), A63--A87.
DOI 10.1137/120898760 |
MR 3151390 |
Zbl 1290.65025
[50] Zampini, S., Tu, X.:
Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput. 39 (2017), A1389--A1415.
DOI 10.1137/16M1080653 |
MR 3682184 |
Zbl 06760251