Previous |  Up |  Next

Article

Keywords:
iterative substructuring; balancing domain decomposition; BDDC; multiscale methods; adaptive methods, flow in porous media; reservoir simulation; SPE 10 benchmark
Summary:
We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection of flux constraints. Performance of the method is illustrated on the benchmark problem from the 10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and 3D demonstrate that the first two steps of the method exhibit some numerical upscaling properties, and the adaptive preconditioner in the last step allows a significant decrease in the number of iterations of conjugate gradients at a small additional cost.
References:
[1] Aarnes, J. E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in porous media using Matlab. Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF Springer, Berlin (2007), 265-306. DOI 10.1007/978-3-540-68783-2_9 | MR 2348925 | Zbl 1330.76004
[2] Aarnes, J. E., Krogstad, S., Lie, K.-A.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5 (2006), 337-363. DOI 10.1137/050634566 | MR 2247754 | Zbl 1124.76022
[3] Aarnes, J. E., Krogstad, S., Lie, K.-A.: Multiscale mixed/mimetic methods on corner-point grids. Comput. Geosci. 12 (2008), 297-315. DOI 10.1007/s10596-007-9072-8 | MR 2434946 | Zbl 1259.76065
[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15, Springer, New York (1991). DOI 10.1007/978-1-4612-3172-1 | MR 1115205 | Zbl 0788.73002
[5] Christie, M. A., Blunt, M. J.: Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reservoir Eval. Eng. 4 (2001), 308-317. DOI 10.2118/72469-pa
[6] Cowsar, L. C., Mandel, J., Wheeler, M. F.: Balancing domain decomposition for mixed finite elements. Math. Comput. 64 (1995), 989-1015. DOI 10.2307/2153480 | MR 1297465 | Zbl 0828.65135
[7] Cros, J.-M.: A preconditioner for the Schur complement domain decomposition method. 14th Int. Conf. on Domain Decomposition Methods in Science and Engineering I. Herrera et al. National Autonomous University of Mexico (UNAM), México (2003), 373-380. MR 2093729 | Zbl 1103.65004
[8] Demmel, J. W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997). DOI 10.1137/1.9781611971446 | MR 1463942 | Zbl 0879.65017
[9] Dohrmann, C. R.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25 (2003), 246-258. DOI 10.1137/S1064827502412887 | MR 2047204 | Zbl 1038.65039
[10] Dohrmann, C. R.: A substructuring preconditioner for nearly incompressible elasticity problems. Technical report SAND 2004-5393, Sandia National Laboratories (2004).
[11] Dohrmann, C. R., Widlund, O. B.: Some recent tools and a BDDC algorithm for 3D problems in $H( curl)$. Domain Decomposition Methods in Science and Engineering XX Lecture Notes Computational Science and Engineering 91, Springer, Heidelberg (2013), 15-25. DOI 10.1007/978-3-642-35275-1_2 | MR 3242973 | Zbl 06125818
[12] Efendiev, Y., Hou, T. Y.: Multiscale Finite Element Methods: Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences 4, Springer, New York (2009). DOI 10.1007/978-0-387-09496-0 | MR 2477579 | Zbl 1163.65080
[13] Ewing, R. E., Wang, J.: Analysis of the Schwarz algorithm for mixed finite elements methods. RAIRO, Modélisation Math. Anal. Numér. 26 (1992), 739-756. DOI 10.1051/m2an/1992260607391 | MR 1183415 | Zbl 0765.65104
[14] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. DOI 10.1002/nme.76 | MR 1813746 | Zbl 1008.74076
[15] Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl. 7 (2000), 687-714. DOI 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S | MR 1802366 | Zbl 1051.65119
[16] Fragakis, Y., Papadrakakis, M.: The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. DOI 10.1016/S0045-7825(03)00374-8 | Zbl 1054.74069
[17] Glowinski, R., Wheeler, M. F.: Domain decomposition and mixed finite element methods for elliptic problems. First International Symposium on Domain Decomposition Methods for Partial Differential Equations SIAM, Philadelphia (1988), 144-172. MR 0972516 | Zbl 0661.65105
[18] Golub, G. H., Loan, C. F. Van: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (1996). MR 1417720 | Zbl 0865.65009
[19] Hanek, M., Šístek, J., Burda, P.: The effect of irregular interfaces on the BDDC method for the Navier-Stokes equations. Proc. Int. Conf. Domain Decomposition Methods in Science and Engineering XXIII Lecture Notes Computational Science and Engineering 116, Springer, Cham (2017), 171-178. DOI 10.1007/978-3-319-52389-7_16 | MR 3718352 | Zbl 06747817
[20] Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, Department of Computer Science, University of Minnesota (1998).
[21] Klawonn, A., Kühn, M., Rheinbach, O.: Adaptive coarse spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput. 38 (2016), A2880--A2911 (2016). DOI 10.1137/15m1049610 | MR 3546980 | Zbl 1346.74168
[22] Klawonn, A., Kühn, M., Rheinbach, O.: A closer look at local eigenvalue solvers for adaptive FETI-DP and BDDC. Technical report, Universität zu Köln (2018). Available at https://kups.ub.uni-koeln.de/9020/
[23] Klawonn, A., Rheinbach, O., Widlund, O. B.: An analysis of a FETI-DP algorithm on irregular subdomains in the plane. SIAM J. Numer. Anal. 46 (2008), 2484-2504. DOI 10.1137/070688675 | MR 2421044 | Zbl 1176.65135
[24] Knyazev, A. V.: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23 (2001), 517-541. DOI 10.1137/S1064827500366124 | MR 1861263 | Zbl 0992.65028
[25] Christensen, M. la Cour, Villa, U., Engsig-Karup, A. P., Vassilevski, P. S.: Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (AMGe) approach. SIAM J. Sci. Comput. 39 (2017), B102--B137. DOI 10.1137/140988991 | MR 3612903 | Zbl 1360.65247
[26] Li, J., Tu, X.: Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems. Numer. Linear Algebra Appl. 16 (2009), 745-773. DOI 10.1002/nla.639 | MR 2554500 | Zbl 1224.65248
[27] Li, J., Widlund, O. B.: BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal. 44 (2006), 2432-2455. DOI 10.1137/050628556 | MR 2272601 | Zbl 1233.76077
[28] Li, J., Widlund, O. B.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Methods Eng. 66 (2006), 250-271. DOI 10.1002/nme.1553 | MR 2224479 | Zbl 1114.65142
[29] Mandel, J., Sousedík, B.: Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196 (2007), 1389-1399. DOI 10.1016/j.cma.2006.03.010 | MR 2277024 | Zbl 1173.74435
[30] Mandel, J., Sousedík, B., Dohrmann, C. R.: Multispace and multilevel BDDC. Computing 83 (2008), 55-85. DOI 10.1007/s00607-008-0014-7 | MR 2457352 | Zbl 1163.65091
[31] Mandel, J., Sousedík, B., Šístek, J.: Adaptive BDDC in three dimensions. Math. Comput. Simul. 82 (2012), 1812-1831. DOI 10.1016/j.matcom.2011.03.014 | MR 2967935 | Zbl 1255.65225
[32] Mathew, T. P.: Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. I. Algorithms and numerical results. Numer. Math. 65 (1993), 445-468. DOI 10.1007/BF01385762 | MR 1231895 | Zbl 0801.65106
[33] Oh, D.-S., Widlund, O. B., Zampini, S., Dohrmann, C. R.: BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields. Math. Comput. 87 (2018), 659-692. DOI 10.1090/mcom/3254 | MR 3739213 | Zbl 1380.65065
[34] Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. Lecture Notes in Computational Science and Engineering 90, Springer, Berlin (2013). DOI 10.1007/978-3-642-23588-7 | MR 3013465 | Zbl 1272.65100
[35] Pechstein, C., Dohrmann, C. R.: A unified framework for adaptive BDDC. ETNA, Electron. Trans. Numer. Anal. 46 (2017), 273-336. MR 3678572 | Zbl 1368.65043
[36] Pechstein, C., Scheichl, R.: Analysis of FETI methods for multiscale PDEs. Part II: interface variation. Numer. Math. 118 (2011), 485-529. DOI 10.1007/s00211-011-0359-2 | MR 2810804 | Zbl 1380.65388
[37] Šístek, J., Březina, J., Sousedík, B.: BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions. Numer. Linear Algebra Appl. 22 (2015), 903-929. DOI 10.1002/nla.1991 | MR 3426321 | Zbl 1389.76057
[38] Sousedík, B.: Nested BDDC for a saddle-point problem. Numer. Math. 125 (2013), 761-783. DOI 10.1007/s00211-013-0548-2 | MR 3127330 | Zbl 1282.65167
[39] Sousedík, B., Šístek, J., Mandel, J.: Adaptive-multilevel BDDC and its parallel implementation. Computing 95 (2013), 1087-1119. DOI 10.1007/s00607-013-0293-5 | MR 3125603 | Zbl 1307.65175
[40] Spillane, N., Rixen, D. J.: Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95 (2013), 953-990. DOI 10.1002/nme.4534 | MR 3093793 | Zbl 1352.65553
[41] Toselli, A., Widlund, O.: Domain Decomposition Methods---Algorithms and Theory. Springer Series in Computational Mathematics 34, Springer, Berlin (2005). DOI 10.1007/b137868 | MR 2104179 | Zbl 1069.65138
[42] Tu, X.: A BDDC algorithm for a mixed formulation of flow in porous media. ETNA, Electron. Trans. Numer. Anal. 20 (2005), 164-179. MR 2175341 | Zbl 1160.76368
[43] Tu, X.: A BDDC algorithm for flow in porous media with a hybrid finite element discretization. ETNA, Electron. Trans. Numer. Anal. 26 (2007), 146-160. MR 2366094 | Zbl 1170.76034
[44] Tu, X.: Three-level BDDC in three dimensions. SIAM J. Sci. Comput. 29 (2007), 1759-1780. DOI 10.1137/050629902 | MR 2341811 | Zbl 1163.65094
[45] Tu, X.: Three-level BDDC in two dimensions. Int. J. Numer. Methods Eng. 69 (2007), 33-59. DOI 10.1002/nme.1753 | MR 2282536 | Zbl 1134.65087
[46] Tu, X.: A three-level BDDC algorithm for a saddle point problem. Numer. Math. 119 (2011), 189-217. DOI 10.1007/s00211-011-0375-2 | MR 2824859 | Zbl 1230.65136
[47] Tu, X., Li, J.: A balancing domain decomposition method by constraints for advection-diffusion problems. Commun. Appl. Math. Comput. Sci. 3 (2008), 25-60. DOI 10.2140/camcos.2008.3.25 | MR 2425545 | Zbl 1165.65402
[48] Vecharynski, E., Saad, Y., Sosonkina, M.: Graph partitioning using matrix values for preconditioning symmetric positive definite systems. SIAM J. Sci. Comput. 36 (2014), A63--A87. DOI 10.1137/120898760 | MR 3151390 | Zbl 1290.65025
[49] Yang, Y., Fu, S., Chung, E. T.: A two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous media. Available at https://arxiv.org/abs/1807.07220 (2018), 17 pages. MR 3942719
[50] Zampini, S., Tu, X.: Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput. 39 (2017), A1389--A1415. DOI 10.1137/16M1080653 | MR 3682184 | Zbl 06760251
Partner of
EuDML logo