[4] Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.:
Image inpainting. Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques ACM Press/Addison-Wesley Publishing Company, New York 417-424 (2000).
DOI 10.1145/344779.344972
[17] Fichera, G.:
Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all'equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico, autoaggiunti. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 1 (1949), Italian 75-100.
MR 0035370 |
Zbl 0035.18603
[18] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.:
Towards PDE-based image compression. N. Paragios et al. Variational, Geometric, and Level Set Methods in Computer Vision Lecture Notes in Computer Science 3752, Springer, Berlin (2005), 37-48.
DOI 10.1007/11567646 |
MR 2232529 |
Zbl 1159.68589
[19] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.:
Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31 (2008), 255-269.
DOI 10.1007/s10851-008-0087-0 |
MR 2407524
[21] Guillemot, C., Meur, O. Le:
Image inpainting: Overview and recent advances. IEEE Signal Processing Magazine 31 (2014), 127-144.
DOI 10.1109/msp.2013.2273004
[22] Hoeltgen, L.: Optimal interpolation data for image reconstructions. Ph.D. Thesis, Saarland University, Saarbrücken (2014).
[24] Hoeltgen, L., Harris, I., Breuß, M., Kleefeld, A.:
Analytic existence and uniqueness results for PDE-based image reconstruction with the Laplacian. International Conference on Scale Space and Variational Methods in Computer Vision F. Lauze et al. Lecture Notes in Computer Science 10302, Springer, Cham (2017), 66-79.
DOI 10.1007/978-3-319-58771-4_6 |
MR 3864739
[25] L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr:
Optimizing spatial and tonal data for PDE-based inpainting. Variational Methods, In Imaging and Geometric Control M. Bergounioux et al. Radon Series on Computational and Applied Mathematics 18, De Gruyter, Berlin (2017), 35-83.
DOI 10.1515/9783110430394 |
MR 3618249 |
Zbl 06984290
[26] Hoeltgen, L., Setzer, S., Weickert, J.:
An optimal control approach to find sparse data for Laplace interpolation. Energy Minimization Methods in Computer Vision and Pattern Recognition A. Heyden et al. Lecture Notes in Computer Science 8081, Springer, Berlin (2013), 151-164.
DOI 10.1007/978-3-642-40395-8_12
[27] Hoeltgen, L., Weickert, J.:
Why does non-binary mask optimisation work for diffusion-based image compression?. X.-C. Tai et al. Energy Minimization Methods in Computer Vision and Pattern Recognition Lecture Notes in Computer Science 8932, Springer, Cham (2015), 85-98.
DOI 10.1007/978-3-319-14612-6_7
[28] Kufner, A.:
Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980).
MR 0664599 |
Zbl 0455.46034
[29] Kufner, A., Opic, B.:
The Dirichlet problem and weighted spaces. I. Čas. Pěst. Mat. 108 (1983), 381-408.
MR 0727537 |
Zbl 0589.35016
[30] Kufner, A., Opic, B.:
How to define reasonably weighted Sobolev spaces. Commentat. Math. Univ. Carol. 25 (1984), 537-554.
MR 0775568 |
Zbl 0557.46025
[31] Kufner, A., Opic, B.:
Some remarks on the definition of weighted Sobolev spaces. Partial Differential Equations, 1983 ``Nauka'' Sibirsk. Otdel, Novosibirsk (1986), 119-126 Russian.
MR 0851604
[32] Kufner, A., Opic, B.:
The Dirichlet problem and weighted spaces. II. Čas. Pěstování Mat. 111 (1986), 242-253.
MR 0853789 |
Zbl 0654.35039
[34] Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.:
Edge-based compression of \hbox{cartoon}-like images with homogeneous diffusion. Pattern Recognition 44 (2011), 1859-1873.
DOI 10.1016/j.patcog.2010.08.004
[35] Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., Doerr, B.:
Optimising spatial and tonal data for homogeneous diffusion inpainting. Scale Space and Variational Methods in Computer Vision A. M. Bruckstein et al. Lecture Notes in Computer Science 6667, Springer, Berlin (2012), 26-37.
DOI 10.1007/978-3-642-24785-9_3 |
MR 3207755
[36] Martinet, B.:
Régularisation d'inéquations variationnelles par approximations successives. Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French.
MR 0298899 |
Zbl 0215.21103
[37] Masnou, S., Morel, J.-M.:
Level lines based disocclusion. Proceedings 1998 International Conference on Image Processing. ICIP98 IEEE (2002), 259-263.
DOI 10.1109/icip.1998.999016 |
MR 1888912
[40] Noma, A. A., Misulia, M. G.: Programming topographic maps for automatic terrain model construction. Surveying and Mapping 19 (1959), 355-366.
[42] Opic, B., Kufner, A.:
Hardy-type Inequalities. Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990).
MR 1069756 |
Zbl 0698.26007
[43] Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.:
Evaluating the true potential of diffusion-based inpainting in a compression context. Signal Processing: Image Communication 46 (2016), 40-53.
DOI 10.1016/j.image.2016.05.002
[44] Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.:
From optimised inpainting with linear PDEs towards competitive image compression codecs. Image and Video Technology T. Bräunl et al. Lecture Notes in Computer Science 9431, Springer, Cham (2016), 63-74.
DOI 10.1007/978-3-319-29451-3_6
[45] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.:
Numerical Recipes in C tt{++}. The Art of Scientific Computing. Cambridge University Press, Cambridge (2002).
MR 1880993 |
Zbl 1078.65500
[47] Schmaltz, C., Weickert, J., Bruhn, A.:
Beating the quality of JPEG 2000 with anisotropic diffusion. Pattern Recognition J. Denzler et al. Lecture Notes in Computer Science 5748, Springer, Berlin (2009), 452-461.
DOI 10.1007/978-3-642-03798-6_46
[49] Solomon, C., Breckon, T.:
Fundamentals of Digital Image Processing. A Practical Approach with Examples in Matlab. Wiley-Blackwell, Chichester (2014).
DOI 10.1002/9780470689776
[51] Višik, M. I., Grušin, V. V.:
Boundary value problems for elliptic equations degenerate on the boundary of a domain. Math. USSR, Sb. 9 (1969), 423-454.
DOI 10.1070/sm1969v009n04abeh002055
[54] Zaremba, S.:
Sur un problème mixte relatif à l'équation de Laplace. Bulletin international de l'Académie des sciences de Cracovie (1910), 313-344 French.
Zbl 41.0854.12