[4] Balcar B., Jech T., Pazák T.:
Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. London Math. Soc. 37 (2005), no. 6, 885–898.
DOI 10.1112/S0024609305004807 |
MR 2186722
[5] Benjamini I., Schramm O.:
Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (2001), no. 23, 13 pages.
DOI 10.1214/EJP.v6-96 |
MR 1873300
[6] Bollobás B., Riordan O.:
Sparse graphs: metrics and random models. Random Structures Algorithms 39 (2011), no. 1, 1–38.
DOI 10.1002/rsa.20334 |
MR 2839983
[7] Borgs Ch., Chayes J., Lovász L.:
Moments of two-variable functions and the uniqueness of graph limits. Geom. Funct. Anal. 19 (2010), no. 6, 1597–1619.
DOI 10.1007/s00039-010-0044-0 |
MR 2594615
[8] Borgs Ch., Chayes J., Lovász L., Sós V. T., Szegedy B., Vesztergombi K.:
Graph limits and parameter testing. STOC'06, Proc. of the 38th Annual ACM Symposium on Theory of Computing, 2006, pages 261–270.
MR 2277152
[9] Borgs C., Chayes J. T., Lovász L., Sós V. T., Vesztergombi K.:
Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008), no. 6, 1801–1851.
DOI 10.1016/j.aim.2008.07.008 |
MR 2455626
[10] Borgs C., Chayes J. T., Lovász L., Sós V. T., Vesztergombi K.:
Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2) 176 (2012), no. 1, 151–219.
DOI 10.4007/annals.2012.176.1.2 |
MR 2925382
[11] Gajarský J., Hliněný P., Kaiser T., Král' D., Kupec M., Obdržálek J., Ordyniak S., Tůma V.:
First order limits of sparse graphs: plane trees and path-width. Random Structures Algorithms 50 (2017), no. 4, 612–635.
DOI 10.1002/rsa.20676 |
MR 3660522
[13] Hausdorff F.:
Set Theory. Chelsea Publishing, New York, 1962.
MR 0141601
[16] Hoover D.: Relations on Probability Spaces and arrays of Random Variables. Tech. report, Institute for Advanced Study, Princeton, 1979.
[17] Kun G., Thom A.: Inapproximability of actions and Kazhdan's property (T). available at arXiv:1901.03963 [math.GR] (2019), 9 pages.
[18] Lascar D.:
La théorie des modèles en peu de maux. Nouvelle Bibliothèque Mathématique, 10, Cassini, Paris, 2009 (French).
MR 3408502 |
Zbl 1205.00006
[20] Nešetřil J., Ossona de Mendez P.:
A model theory approach to structural limits. Comment. Math. Univ. Carolin. 53 (2012), no. 4, 581–603.
MR 3016428
[22] Nešetřil J., Ossona de Mendez P.:
Modeling limits in hereditary classes: reduction and application to trees. Electron. J. Combin. 23 (2016), no. 2, paper 2.52, 33 pages.
DOI 10.37236/5628 |
MR 3522136
[23] Nešetřil J., Ossona de Mendez P.:
Structural sparsity. Uspekhi Mat. Nauk 71 (2016), no. 1(427), 85–116; translation in Russian Math. Surveys 71 (2016), no. 1, 79–107.
MR 3507464
[24] Nešetřil J., Ossona de Mendez P.:
Cluster analysis of local convergent sequences of structures. Random Structures Algorithms 51 (2017), no. 4, 674–728.
DOI 10.1002/rsa.20719 |
MR 3718594
[25] Nešetřil J., Ossona de Mendez P.:
A unified approach to structural limits (with application to the study of limits of graphs with bounded tree-depth). to appear in Mem. Amer. Math. Soc. (2017), 117 pages.
MR 2226435
[26] Nešetřil J., Ossona de Mendez P.:
Existence of modeling limits for sequences of sparse structures. published online in J. Symb. Log. (2019), 22 pages. doi:10.1017/jsl.2018.32.
DOI 10.1017/jsl.2018.32
[27] Urysohn P.:
Works on Topology and Other Areas of Mathematics 1, 2. State Publ. of Technical and Theoretical Literature, Moskva, 1951, (Russian).
MR 0049131