[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.:
Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Q. J. Math., 62, 2, 2011, 259-288,
DOI 10.1093/qmath/hap040 |
MR 2805204
[3] Biswas, I., Loftin, J., Stemmler, M.:
Flat bundles on affine manifolds. Arabian Journal of Mathematics, 2, 2, 2013, 159-175,
DOI 10.1007/s40065-012-0064-8 |
MR 3055288
[6] Lisi, S.T.:
Applications of Symplectic Geometry to Hamiltonian Mechanics. 2006, PhD thesis, New York University.
MR 2708404
[8] Peyghan, E., Heydari, A., Far, L. Nourmohammadi:
On the geometry of tangent bundles with a class of metrics. Annales Polonici Mathematici, 103, 2012, 229-246,
DOI 10.4064/ap103-3-2 |
MR 2876391
[9] Peyghan, E., Nasrabadi, H., Tayebi, A.:
The homogenous lift to the $(1,1)$-tensor bundle of a Riemannian metric. Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p,
MR 3037240
[11] Zhang, J., Li, F.:
Symplectic and Kähler structures on statistical manifolds induced from divergence functions. Conference paper in Geometric Science of Information, 2013, 595-603, Springer,
MR 3126092