[1] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.:
Camassa-Holm equations as a closure model for trubulent channel andpipe flow. Phys. Rev. Lett. 81 (1998), 5338–5341.
DOI 10.1103/PhysRevLett.81.5338 |
MR 1745983
[2] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.:
A connection between the Camassa-Holm equations and turbulent flowsin channels and pipes. Phys. Fluids 11 (1999), 2343–2353.
DOI 10.1063/1.870096 |
MR 1719962
[3] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.:
The Camassa-Holm equations and turbulence. Phys. D 133 (1999), 49–65.
DOI 10.1016/S0167-2789(99)00098-6 |
MR 1721139
[4] Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.:
On a Leray-$\alpha $ model of turbulence. Proc. Roy. Soc. London Ser. A 461 (2005), 629–649.
MR 2121928
[5] Fan, J., Ozawa, T.:
Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha $-MHD model. Kinet. Relat. Models 2 (2009), 293–305.
DOI 10.3934/krm.2009.2.293 |
MR 2507450
[6] Foias, C., Holm, D.D., Titi, E.S.:
The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokesequations and trubulence theory. J. Differential Equations 14 (2002), 1–35.
DOI 10.1023/A:1012984210582 |
MR 1878243
[7] Frazier, M., Jawerth, B., Weiss, G.:
Littlewood-Paley theoryand the study of function spaces. CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,, 1991.
MR 1107300
[9] Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.:
Necessary and sufficient conditions for the fractional Gargliardo-Nirenberginequalities and applications to Navier-Stokes and generalized bosonequations. RIMS Kokyuroku Bessatsu 26 (2011), 159–175.
MR 2883850
[10] Holm, D.D.:
Lagrangian averages, averaged Lagragians, and themean effects of fluctuations in fluid dynamics. Chaos 12 (2002), 518–530.
DOI 10.1063/1.1460941 |
MR 1907663
[12] Kato, T.:
Liapunov Functions and Monotonicity in the Euler andNavier-Stokes Equations. Lecture Notes in Math., vol. 1450, Springer-Verlag, Berlin, 1990.
DOI 10.1007/BFb0084898 |
MR 1084601
[14] Linshiz, J.S., Titi, E.S.:
Analytical study of certainmagnetohydrodynamic-$\alpha $ models. J. Math. Phys. 48 (2007), 28pp., 065504.
DOI 10.1063/1.2360145 |
MR 2337020
[16] Meyer, Y.:
Oscillating patterns in some linear evolutionequations. Lecture Notes in Math., vol. 1871, 2006, pp. 101–187.
MR 2196363
[19] Zhou, Y., Fan, J.:
On the Cauchy problem for a Leray-$\alpha $ model. Nonlinear Analysis Real World Applications (2010).
MR 2729050
[22] Zhou, Y., Gala, S.:
Logarithmically improved regularitycriteria for the Navier–Stokes equations in multiplier spaces. J. Math. Anal. Appl. 356 (2009), 498–501.
DOI 10.1016/j.jmaa.2009.03.038 |
MR 2524284
[23] Zhou, Y., Gala, S.:
Regularity criteria for the solutions tothe 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61 (2010), 193–199.
DOI 10.1007/s00033-009-0023-1 |
MR 2609661