Previous |  Up |  Next

Article

Keywords:
$p$-group; nonlinear irreducible character; non-faithful character
Summary:
Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.
References:
[1] Berkovich, Ya. G., Zhmud', E. M.: Characters of Finite Groups. Part 2. Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). MR 1486039 | Zbl 0934.20009
[2] Fernández-Alcober, G. A., Moretó, A.: Groups with two extreme character degrees and their normal subgroups. Trans. Am. Math. Soc. 353 (2001), 2171-2192. DOI 10.1090/S0002-9947-01-02685-X | MR 1814066 | Zbl 0968.20005
[3] The GAP Group. GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org
[4] Iranmanesh, A., Saeidi, A.: Finite groups with a unique nonlinear nonfaithful irreducible character. Arch. Math., Brno 47 (2011), 91-98. MR 2813535 | Zbl 1249.20009
[5] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). DOI 10.1090/chel/359 | MR 0460423 | Zbl 0337.20005
[6] Saeidi, A.: Classification of solvable groups possessing a unique nonlinear non-faithful irreducible character. Cent. Eur. J. Math. 12 (2014), 79-83. DOI 10.2478/s11533-013-0327-4 | MR 3121823 | Zbl 1287.20013
[7] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one. Proc. Am. Math. Soc. 19 (1968), 459-461. DOI 10.2307/2035551 | MR 0222160 | Zbl 0244.20010
[8] Wang, H., Chen, X., Zeng, J.: Zeros of Brauer characters. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. DOI 10.1016/S0252-9602(12)60112-X | MR 2927433 | Zbl 1274.20007
[9] Zhang, G. X.: Finite groups with exactly two nonlinear irreducible characters. Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. MR 1397112 | Zbl 0856.20008
Partner of
EuDML logo